Refine
Department, Institute
Keywords
- 3D user interface (1)
- Active locomotion (1)
- body-centric cues (1)
- embodied interfaces (1)
- leaning, self-motion perception (1)
- motion cueing (1)
- natural user interface (1)
- navigation (1)
- vection (1)
- virtual environments (1)
In this paper, we describe a user study comparing five different locomotion interfaces for virtual reality locomotion. We compared a standard non-motion cueing interface, Joystick (Xbox), with four motion cueing interfaces, NaviChair (stool with springs), MuvMan (sit/stand active stool), Head-Directed (Oculus Rift DK2), and Swivel Chair (everyday office chair with leaning capability). Each interface had two degrees of freedom to move forward/backward and rotate using velocity (rate) control. The aim of this mixed methods study was to better understand relevant user experience factors and guide the design of future locomotion interfaces. This study employed methods from HCI to provide an understanding of why users behave a certain way while using the interface and to unearth any new issues with the design. Participants were tasked to search for objects in a virtual city while they provided talk-aloud feedback and we logged their behaviour. Subsequently, they completed a post-experimental questionnaire on their experience. We found that the qualitative themes of control, usability, and experience echoed the results of the questionnaire, providing internal validity. The quantitative measures revealed the Joystick to be significantly more comfortable and precise than the motion cueing interfaces. However, the qualitative feedback and interviews showed this was due to the reduced perceived controllability and safety of the motion cueing interfaces. Designers of these interfaces should consider using a backrest if users need to lean backwards and avoid using velocity-control for rotations when using HMDs.
The study of locomotion in virtual environments is a diverse and rewarding research area. Yet, creating effective and intuitive locomotion techniques is challenging, especially when users cannot move around freely. While using handheld input devices for navigation may often be good enough, it does not match our natural experience of motion in the real world. Frequently, there are strong arguments for supporting body-centered self-motion cues as they may improve orientation and spatial judgments, and reduce motion sickness. Yet, how these cues can be introduced while the user is not moving around physically is not well understood. Actuated solutions such as motion platforms can be an option, but they are expensive and difficult to maintain. Alternatively, within this article we focus on the effect of upper-body tilt while users are seated, as previous work has indicated positive effects on self-motion perception. We report on two studies that investigated the effects of static and dynamic upper body leaning on perceived distances traveled and self-motion perception (vection). Static leaning (i.e., keeping a constant forward torso inclination) had a positive effect on self-motion, while dynamic torso leaning showed mixed results. We discuss these results and identify further steps necessary to design improved embodied locomotion control techniques that do not require actuated motion platforms.