Refine
Department, Institute
Document Type
- Article (12)
- Conference Object (3)
- Report (3)
- Part of a Book (1)
Year of publication
Keywords
- Crystallinity (3)
- Complex modulus (2)
- Extrusion blow molding (2)
- Biaxiality (1)
- Camphorquinone (1)
- Curing behavior (1)
- Curing kinetics (1)
- DMA (1)
- DSC (1)
- Dental composites (1)
The ongoing miniaturization, multi-layer structure parts and hybrid parts require methods to determine mechanical properties on a micro-scale. However, there is a gap in measuring techniques. On one hand there are the classical methods to measure hardness e.g. VICKERS, ROCKWELL, UNIVERSAL, IRHD etc having resolutions typically above 100μm. On the other hand there are well-developed AFM methods that allow for the determination of mechanical properties in the nanometer range. This paper describes an indentation technique that yields data of mechanical properties in the micrometer range between typically 5 to 50 μm. The measuring device and the data evaluation is presented. Results of micro-mechanical mapping are shown for NR-SBR rubber interfaces, a fuel tank and a part manufactured by two component injection moulding. Finally, the measured micro-mechanical stiffness is compared to the YOUNG’s modulus of the corresponding materials.
The ongoing use of miniaturization, multi layer structure parts, and hybrid parts requires methods to determine mechanical properties on a micro scale. However, there is a gap in measuring techniques. On one hand there are the classical methods to measure hardness, e.g., Vickers, Rockwell, Universal, and IRHD, having resolutions typically above 100 µm. On the other hand, there are well-developed AFM methods that allow for the determination of mechanical properties in the nanometer range. This article describes an indentation technique that yields data of mechanical properties in the micrometer range between typically 5 and 50 µm. The measuring device and the data evaluation are presented. Results of micro-mechanical mapping are shown for NR-SBR rubber interfaces, a fuel tank, and a part manufactured by two-component injection molding. Finally, the measured micro-mechanical stiffness is compared to the Young's modulus of the corresponding materials.
Influence of design of extrusion blow molding (EBM) in terms of extrusion direction set-up and draw ratio as well as process conditions (mold temperature) on storage modulus of high density polyethylene EBM containers was analyzed with dynamic mechanical analysis. All three parameters - mold temperature, flow direction and draw ratio - are statistically significant and lead to relative and absolute evaluation of storage modulus. Furthermore, flow induced changes in crystallinity was analyzed by differential scanning calorimetry. Obtained data on deformation properties can be employed for more sophisticated finite element simulations with the aim to reach more sustainable extrusion blow molding production.
This study presents a microindentation system which allows spatially resolved local as well as bulk viscoelastic material information to be obtained within one instrument. The microindentation method was merged with dynamic mechanical analysis (DMA) for a tungsten cone indenter. Three tungsten cone indenters were investigated: tungsten electrode, tungsten electrode + 2% lanthanum, and tungsten electrode + rare earth elements. Only the tungsten electrode + 2% lanthanum indenter showed the sinusoidal response, and its geometry remained unaffected by the repeated indentations. Complex moduli obtained from dynamic microindentation for high-density polyethylene, polybutylene terephthalate, polycarbonate, and thermoplastic polyurethane are in agreement with the literature. Additionally, by implementing a specially developed x-y-stage, this study showed that dynamic microindentation with a tungsten cone indenter was an adequate method to determine spatially resolved local viscoelastic surface properties.