Refine
Department, Institute
Document Type
- Conference Object (13)
- Article (7)
- Preprint (1)
- Report (1)
Keywords
- West Africa (2)
- energy meteorology (2)
- Electric mobility (1)
- Genetic algorithm (1)
- Ghanaian health sector (1)
- LSTM (1)
- Maximal covering location problem (1)
- Multi-objective (1)
- Multi-stage (1)
- Optimization (1)
Aufgrund eines nahezu gleichlautenden Beschlusses des Kreistages im Rhein-Sieg-Kreis (RSK) und des Hauptausschusses der Stadt Bonn im Jahr 2011 wurden die jeweiligen Verwaltungen beauftragt, gemeinsam mit den Energieversorgern der Region ein Starthilfekonzept Elektromobilität zu entwickeln. In Folge dieses Beschlusses konstituierte sich Ende 2011 ein Arbeitskreis, der aus den Verwaltungen des Rhein-Sieg-Kreises und der Stadt Bonn, den Energieversorgern SWB Energie und Wasser, der Rhenag, den Stadtwerken Troisdorf, der Rheinenergie und den RWE besteht. Die inhaltlichen Schwerpunkte, die inzwischen in drei Arbeitskreisen behandelt werden, umfassen den Ausbau der Ladeinfrastruktur, die Öffentlichkeitsarbeit und die Bereitstellung von Strom aus regenerativen Quellen durch den Zubau entsprechender Anlagen in der Region. Während Maßnahmen zur Öffentlichkeitsarbeit und die Bereitstellung Grünen Stroms aus den Arbeitskreisen direkt bearbeitet und bewegt werden, ist dies aufgrund der Komplexität des Themas und der zahlreichen Einflussgrößen beim Ausbau der Ladeinfrastruktur nicht möglich. Daraus entstand die Überlegung einer Kooperation mit der Hochschule Bonn-Rhein-Sieg.
An evolving strategy for a multi-stage placement of charging stations for electrical cars is developed. Both an incremental as well as a decremental placement decomposition are evaluated on this Maximum Covering Location Problem. We show that an incremental Genetic Algorithm benefits from problem decomposition effects of having multiple stages and shows greedy behaviour.
Maximal covering location problems have efficiently been solved using evolutionary computation. The multi-stage placement of charging stations for electric cars is an instance of this problem which is addressed in this study. It is particularly challenging, because a final solution is constructed in multiple steps, stations cannot be relocated easily and intermediate solutions should be optimal with respect to certain objectives.
Solar energy is one option to serve the rising global energy demand with low environmental Impact [1]. Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections. Clouds are moving on a short term timescale and have a high influence on the available solar radiation, as they absorb, reflect and scatter parts of the incoming light [2]. However, modeling photovoltaic (PV) power yields with a spectral resolution and local cloud information gives new insights on the atmospheric impact on solar energy.
In 2011, the German Federal Ministry of Transport, Building and Urban Development laid the foundation of the Hans-Ertel Centre for Weather Research [Hans-Ertel-Zentrum für Wetterforschung (HErZ)] in order to better connect fundamental meteorological research and teaching at German universities and atmospheric research centers with the needs of the German national weather service Deutscher Wetterdienst (DWD). The concept for HErZ was developed by DWD and its scientific advisory board with input from the entire German meteorological community. It foresees core research funding of about €2,000,000 yr−1 over a 12-yr period, during which time permanent research groups must be established and DWD subjects strengthened in the university curriculum. Five priority research areas were identified: atmospheric dynamics and predictability, data assimilation, model development, climate monitoring and diagnostics, and the optimal use of information from weather forecasting and climate monitoring for the benefit of society. Following an open call, five groups were selected for funding for the first 4-yr phase by an international review panel. A dual project leadership with one leader employed by the academic institute and the other by DWD ensures that research and teaching in HErZ is attuned to DWD needs and priorities, fosters a close collaboration with DWD, and facilitates the transfer of fundamental research into operations. In this article, we describe the rationale behind HErZ and the road to its establishment, present some scientific highlights from the initial five research groups, and discuss the merits and future development of this new concept to better link academic research with the needs and challenges of a national weather service.
Solar energy plants are one of the key options to serve the rising global energy need with low environmental impact. Aerosols reduce global solar radiation due to absorption and scattering and therewith solar energy yields. Depending on the aerosol composition and size distribution they reduce the direct component of the solar radiation and modify the direction of the diffuse component compared to standard atmospheric conditions without aerosols.
Solar energy is one option to serve the rising global energy demand with low environmental impact.1 Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections. Clouds are moving on a short term timescale and have a high influence on the available solar radiation, as they absorb, reflect and scatter parts of the incoming light.2 However, the impact of cloudiness on photovoltaic power yields (PV) and cloud induced deviations from average yields might vary depending on the technology, location and time scale under consideration.
Incoming solar radiation is an important driver of our climate and weather. Several studies (see for instance Frank et al. 2018) have revealed discrepancies between ground-based irradiance measurements and the predictions of regional weather models. In the realm of electricity generation, accurate forecasts of solar photovoltaic (PV)energy yield are becoming indispensable for cost-effective grid operation: in Germany there are 1.6 million PVsystems installed, with a nominal power of 46 GW (Bundesverband Solarwirtschaft 2019). The proliferation of PV systems provides a unique opportunity to characterise global irradiance with unprecedented spatiotemporalresolution, which in turn will allow for highly resolved PV power forecasts.
Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition.
Due to the policy goals for sustainable energy production, renewable energy plants such as photovoltaics are increasingly in use. The energy production from solar radiation depends strongly on atmospheric conditions. As the weather mostly changes, electrical power generation fluctuates, making technical planning and control of power grids to a complex problem.
Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic (PV) systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data.
Solar energy is one option to serve the rising global energy demand with low environmental impact. Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections.
Long-term variability of solar irradiance and its implications for photovoltaic power in West Africa
(2020)
West Africa is one of the least developed regions in the world regarding the energy availability and energy security. Located close to the equator West Africa receives high amounts of global horizontal irradiance (GHI). Thus, solar power and especially photovoltaic (PV) systems seem to be a promising solution to provide electricity with low environmental impact. To plan and to dimension a PV power system climatological data for global horizontal irradiance (GHI) and its variability need to be taken into account. However, ground based measurements of irradiances are not available continuously and cover only a few discrete locations.
This paper addresses long-term historical changes in solar irradiance in West Africa (3 to 20° N and 20° W to 16° E) and the implications for photovoltaic systems. Here, we use satellite irradiance (Surface Solar Radiation Data Set – Heliosat, Edition 2.1 – SARAH-2.1) and temperature data from a reanalysis (ERA5) to derive photovoltaic yields. Based on 35 years of data (1983–2017), the temporal and regional variability as well as long-term trends in global and direct horizontal irradiance are analyzed. Furthermore, a detailed time series analysis is undertaken at four locations. According to the high spatial resolution SARAH-2.1 data record (0.05°×0.05°), solar irradiance is largest (up to a 300 W m−2 daily average) in the Sahara and the Sahel zone with a positive trend (up to 5 W m−2 per decade) and a lower temporal variability (<75 W m−2 between 1983 and 2017 for daily averages). In contrast, the solar irradiance is lower in southern West Africa (between 200 W m−2 and 250 W m−2) with a negative trend (up to −5 W m−2 per decade) and a higher temporal variability (up to 150 W m−2). The positive trend in the north is mostly connected to the dry season, whereas the negative trend in the south occurs during the wet season. Both trends show 95 % significance. Photovoltaic (PV) yields show a strong meridional gradient with the lowest values of around 4 kWh kWp−1 in southern West Africa and values of more than 5.5 kWh kWp−1 in the Sahara and Sahel zone.
Long-term variability of solar irradiance and its implications for photovoltaic power in West Africa
(2020)
This paper addresses long-term changes in solar irradiance for West Africa (3° N to 20° N and 20° W to 16° E) and its implications for photovoltaic power systems. Here we use satellite irradiance (Surface Solar Radiation Data Set-Heliosat, Edition 2.1, SARAH-2.1) to derive photovoltaic yields. Based on 35 years of data (1983–2017) the temporal and regional variability as well as long-term trends of global and direct horizontal irradiance are analyzed. Furthermore, at four locations a detailed time series analysis is undertaken. The dry and the wet season are considered separately.
Impact of atmospheric aerosols on photovoltaic energy production - Scenario for the Sahel zone
(2017)
Photovoltaic (PV) energy is one option to serve the rising global energy need with low environmental impact. PV is of particular interest for local energy solutions in developing countries prone to high solar insolation. In order to assess the PV potential of prospective sites, combining knowledge of the atmospheric state modulating solar radiation and the PV performance is necessary. The present study discusses the PV power as function of atmospheric aerosols in the Sahel zone for clear-sky-days. Daily yields for a polycrystalline silicon PV module are reduced by up to 48 % depending on the climatologically-relevant aerosol abundances.
The temperature of photovoltaic modules is modelled as a dynamic function of ambient temperature, shortwave and longwave irradiance and wind speed, in order to allow for a more accurate characterisation of their efficiency. A simple dynamic thermal model is developed by extending an existing parametric steady-state model using an exponential smoothing kernel to include the effect of the heat capacity of the system. The four parameters of the model are fitted to measured data from three photovoltaic systems in the Allgäu region in Germany using non-linear optimisation. The dynamic model reduces the root-mean-square error between measured and modelled module temperature to 1.58 K on average, compared to 3.03 K for the steady-state model, whereas the maximum instantaneous error is reduced from 20.02 to 6.58 K.
Atmospheric aerosols affect the power production of solar energy systems. Their impact depends on both the atmospheric conditions and the solar technology employed. By being a region with a lack in power production and prone to high solar insolation, West Africa shows high potential for the application of solar power systems. However, dust outbreaks, containing high aerosol loads, occur especially in the Sahel, located between the Saharan desert in the north and the Sudanian Savanna in the south. They might affect the whole region for several days with significant effects on power generation. This study investigates the impact of atmospheric aerosols on solar energy production for the example year 2006 making use of six well instrumented sites in West Africa. Two different solar power technologies, a photovoltaic (PV) and a parabolic through (PT) power plant, are considered. The daily reduction of solar power due to aerosols is determined over mostly clear-sky days in 2006 with a model chain combining radiative transfer and technology specific power generation. For mostly clear days the local daily reduction of PV power (at alternating current) (PVAC) and PT power (PTP) due to the presence of aerosols lies between 13 % and 22 % and between 22 % and 37 %, respectively. In March 2006 a major dust outbreak occurred, which serves as an example to investigate the impact of an aerosol extreme event on solar power. During the dust outbreak, daily reduction of PVAC and PTP of up to 79 % and 100 % occur with a mean reduction of 20 % to 40 % for PVAC and of 32 % to 71 % for PTP during the 12 days of the event.
Ghana suffers from frequent power outages, which can be compensated by off-grid energy solutions. Photovoltaic-hybrid systems become more and more important for rural electrification due to their potential to offer a clean and cost-effective energy supply. However, uncertainties related to the prediction of electrical loads and solar irradiance result in inefficient system control and can lead to an unstable electricity supply, which is vital for the high reliability required for applications within the health sector. Model predictive control (MPC) algorithms present a viable option to tackle those uncertainties compared to rule-based methods, but strongly rely on the quality of the forecasts. This study tests and evaluates (a) a seasonal autoregressive integrated moving average (SARIMA) algorithm, (b) an incremental linear regression (ILR) algorithm, (c) a long short-term memory (LSTM) model, and (d) a customized statistical approach for electrical load forecasting on real load data of a Ghanaian health facility, considering initially limited knowledge of load and pattern changes through the implementation of incremental learning. The correlation of the electrical load with exogenous variables was determined to map out possible enhancements within the algorithms. Results show that all algorithms show high accuracies with a median normalized root mean square error (nRMSE) <0.1 and differing robustness towards load-shifting events, gradients, and noise. While the SARIMA algorithm and the linear regression model show extreme error outliers of nRMSE >1, methods via the LSTM model and the customized statistical approaches perform better with a median nRMSE of 0.061 and stable error distribution with a maximum nRMSE of <0.255. The conclusion of this study is a favoring towards the LSTM model and the statistical approach, with regard to MPC applications within photovoltaic-hybrid system solutions in the Ghanaian health sector.