### Refine

#### Department, Institute

#### Document Type

- Conference Object (3)
- Article (1)
- Preprint (1)

#### Keywords

- Aerodynamics (2)
- MAP-Elites (2)
- Quality Diversity (2)
- Surrogate Modeling (2)
- 3D design (1)
- Computer Automated Design (1)
- Evolutionary algorithms (1)
- Illumination algorithms (1)
- NEAT (1)
- Neuroevolution (1)

Surrogate-assistance approaches have long been used in computationally expensive domains to improve the data-efficiency of optimization algorithms. Neuroevolution, however, has so far resisted the application of these techniques because it requires the surrogate model to make fitness predictions based on variable topologies, instead of a vector of parameters. Our main insight is that we can sidestep this problem by using kernel-based surrogate models, which require only the definition of a distance measure between individuals. Our second insight is that the well-established Neuroevolution of Augmenting Topologies (NEAT) algorithm provides a computationally efficient distance measure between dissimilar networks in the form of "compatibility distance", initially designed to maintain topological diversity. Combining these two ideas, we introduce a surrogate-assisted neuroevolution algorithm that combines NEAT and a surrogate model built using a compatibility distance kernel. We demonstrate the data-efficiency of this new algorithm on the low dimensional cart-pole swing-up problem, as well as the higher dimensional half-cheetah running task. In both tasks the surrogate-assisted variant achieves the same or better results with several times fewer function evaluations as the original NEAT.

A new method for design space exploration and optimization, Surrogate-Assisted Illumination (SAIL), is presented. Inspired by robotics techniques designed to produce diverse repertoires of behaviors for use in damage recovery, SAIL produces diverse designs that vary according to features specified by the designer. By producing high-performing designs with varied combinations of user-defined features a map of the design space is created. This map illuminates the relationship between the chosen features and performance, and can aid designers in identifying promising design concepts. SAIL is designed for use with compu-tationally expensive design problems, such as fluid or structural dynamics, and integrates approximative models and intelligent sampling of the objective function to minimize the number of function evaluations required. On a 2D airfoil optimization problem SAIL is shown to produce hundreds of diverse designs which perform competitively with those found by state-of-the-art black box optimization. Its capabilities are further illustrated in a more expensive 3D aerodynamic optimization task.

The MAP-Elites algorithm produces a set of high-performing solutions that vary according to features defined by the user. This technique to 'illuminate' the problem space through the lens of chosen features has the potential to be a powerful tool for exploring design spaces, but is limited by the need for numerous evaluations. The Surrogate-Assisted Illumination (SAIL) algorithm, introduced here, integrates approximative models and intelligent sampling of the objective function to minimize the number of evaluations required by MAP-Elites.
The ability of SAIL to efficiently produce both accurate models and diverse high-performing solutions is illustrated on a 2D airfoil design problem. The search space is divided into bins, each holding a design with a different combination of features. In each bin SAIL produces a better performing solution than MAP-Elites, and requires several orders of magnitude fewer evaluations. The CMA-ES algorithm was used to produce an optimal design in each bin: with the same number of evaluations required by CMA-ES to find a near-optimal solution in a single bin, SAIL finds solutions of similar quality in every bin.

The MAP-Elites algorithm produces a set of high-performing solutions that vary according to features defined by the user. This technique has the potential to be a powerful tool for design space exploration, but is limited by the need for numerous evaluations. The Surrogate-Assisted Illumination algorithm (SAIL), introduced here, integrates approximative models and intelligent sampling of the objective function to minimize the number of evaluations required by MAP-Elites.
The ability of SAIL to efficiently produce both accurate models and diverse high performing solutions is illustrated on a 2D airfoil design problem. The search space is divided into bins, each holding a design with a different combination of features. In each bin SAIL produces a better performing solution than MAP-Elites, and requires several orders of magnitude fewer evaluations. The CMA-ES algorithm was used to produce an optimal design in each bin: with the same number of evaluations required by CMA-ES to find a near-optimal solution in a single bin, SAIL finds solutions of similar quality in every bin.

Design optimization techniques are often used at the beginning of the design process to explore the space of possible designs. In these domains illumination algorithms, such as MAP-Elites, are promising alternatives to classic optimization algorithms because they produce diverse, high-quality solutions in a single run, instead of only a single near-optimal solution. Unfortunately, these algorithms currently require a large number of function evaluations, limiting their applicability. In this article we introduce a new illumination algorithm, Surrogate-Assisted Illumination (SAIL), that leverages surrogate modeling techniques to create a map of the design space according to user-defined features while minimizing the number of fitness evaluations. On a two-dimensional airfoil optimization problem SAIL produces hundreds of diverse but high-performing designs with several orders of magnitude fewer evaluations than MAP-Elites or CMA-ES. We demonstrate that SAIL is also capable of producing maps of high-performing designs in realistic three-dimensional aerodynamic tasks with an accurate flow simulation. Data-efficient design exploration with SAIL can help designers understand what is possible, beyond what is optimal, by considering more than pure objective-based optimization.