Refine
Keywords
- Adipogenic effect (1)
- Adipose tissue (1)
- Intact proinsulin (1)
- Lipoaspirates (1)
- Mechanical properties of materials (1)
- Mesenchymal stern cells (1)
- Multi-lineage differentiation (1)
- Polymers (1)
- Regenerative medicine (1)
- Resins (1)
Human mesenchymal stem cells (HMSCs) which are isolated from bone marrow stroma, peripheral blood, dermis, muscle and adipose tissue have the advantage of potential autologous transplantation ability. They can be differentiated into chondrogenic, osteogenic, adipogenic and myogenic lineages. Problems of stem cells from bone marrow are low cell numbers, low isolated volumes, pain, and to some extent ethical concerns. The isolation of mesenchymal stem cells from human adipose tissue was recently identified as an alternative source, since these cells are easy to obtain in big cell numbers. Adipose tissue is derived from embryonic mesoderm and contains a heterogeneous stromal cell population. To achieve lineage-specific differentiation of these cells they have to be cultured in media supplemented with appropriate factors. Inductions of the cells into multiple mesenchymal lineages resulted in the expression of several lineage-specific genes, proteins and specific metabolic activity. In conclusion, the potential benefit of the multi-germline capacity of HMSCs seems to be a promising approach for allogenic cell therapy and human tissue engineering.
Background and Objectives: In advanced β-cell dysfunction, proinsulin is increasingly replacing insulin as major component of the secretion product. It has been speculated that proinsulin has at least the same adipogenic potency than insulin, leading to an increased tendency of lipid tissue formation in patients with late stage β-cell dysfunction. Methods and Results: Mesenchymal stem cells obtained from liposuction material were grown in differentiation media containing insulin (0.01 μmol), proinsulin (0.01 μmol) or insulin+proinsulin (each 0.005 μmol). Cell culture supernatants were taken from these experiments and an untreated control at weeks 1, 2, and 3, and were stored at -80°C until analysis. Cell differentiation was microscopically supervised and adiponectin concentrations were measured as marker for differentiation into mature lipid cells. This experiment was repeated three times. No growth of lipid cells and no change in adiponectin values was observed in the negative control group (after 7/14/12 days: 3.2±0.5/3.3±0.1/4.4±0.5 ng/ml/12 h). A continuous differentiation into mature adipocytes (also confirmed by Red-Oil-staining) and a corresponding increase in adiponectin values was observed in the experiments with insulin (3.6±1.9/5.1±1.4/13.3±1.5 ng/ml/12 h; p<0.05 week 1 vs. week 3) and proinsulin (3.3±1.2/3.5±0.3/12.2±1.2 ng/ml/12 h; p<0.05). Comparable effects were seen with the insulin/proinsulin combination. Conclusions: Proinsulin has the same adipogenic potential than insulin in vitro. Proinsulin has only 10∼20% of the glucose-lowering effect of insulin. It can be speculated that the adipogenic potential of proinsulin may be a large contributor to the increased body weight problems in patients with type 2 diabetes and advanced β-cell dysfunction.