Refine
Department, Institute
Document Type
- Article (6)
- Conference Object (2)
Keywords
- EEG (1)
- ERP (1)
- Evidenz (1)
- Exercise (1)
- Gesundheitsmanagement (1)
- Kosten-Nutzen-Betrachtung (1)
- N200 (1)
- P300 (1)
- Sense of presence (1)
- Teilnehmerquoten (1)
Recently, virtual environments (VEs) are suggested to encourage users to exercise regularly. The benefits of chronic exercise on cognitive performance are well documented in non-VE neurophysiological and behavioural studies. Based on event-related potentials (ERP) such as the N200 and P300, cognitive processing may be interpreted on a neuronal level. However, exercise-related neuroelectric adaptation in VE remains widely unclear and thus characterizes the primary aim of the present study. Twenty-two healthy participants performed active (moderate cycling exercise) and passive (no exercise) sessions in three VEs (control, front, surround), each generating a different sense of presence. Within sessions, conditions were randomly assigned, each lasting 5 min and including a choice reaction-time task to assess cognitive performance. According to the international 10:20 system, EEG with real-time triggered stimulus onset was recorded, and peaks of N200 and P300 components (amplitude, latency) were exported for analysis. Heart rate was recorded, and sense of presence assessed prior to and following each session and condition. Results revealed an increase in ERP amplitudes (N200: p < 0.001; P300: p < 0.001) and latencies (N200: p < 0.001) that were most pronounced over fronto-central and occipital electrode sites relative to an increased sense of presence (p < 0.001); however, ERP were not modulated by exercise (each p > 0.05). Hypothesized to mirror cognitive processing, decreases of cognitive performance's accuracy and reaction time failed significance. With respect to previous research, the present neuroelectric adaptation gives reason to believe in compensative neuronal resources that balance demanding cognitive processing in VE to avoid behavioural inefficiency.
Work breaks are known to have positive effects on employees' health, performance and safety. Using a sample of twelve employees working in a stressful and cognitively demanding working environment, this experimental field study examined how different types of work breaks (boxing, deep relaxation and usual breaks) affect participants' mood, cognitive performance and neurophysiological state compared to a control condition without any break. In a repeated measures experimental design, cognitive performance was assessed using an auditory oddball test and a Movement Detection Test. Brain cortical activity was recorded using electroencephalography. Individual's mood was analysed using a profile of mood state. Although neurophysiological data showed improved relaxation of cortical state after boxing (vs. 'no break' and 'deep relaxation'), neither performance nor mood assessment showed similar results. It remains questionable whether there is a universal work break type that has beneficial effects for all individuals. Practitioner Summary: Research on work breaks and their positive effects on employees' health and performance often disregards break activities. This experimental field study in a stressful working environment investigated the effect of different work break activities. A universal work break type that is beneficial for this workplace could not be identified.
An Experimental Field-Study on Active and Passive Work Breaks in a Stressful Work Environment
(2017)
Work breaks are known to have positive effects on employees’ health, performance, and safety. However, prior research has focused mainly on their timing, duration, and frequency but less on break activities. Moreover, most studies examined work breaks in rather repetitive and physical demanding work. Thus, we conducted an experimental field study with a sample of employees’ working in a stressful and cognitive demanding working environment and examined how different types of work breaks (boxing, deep relaxation, and usual breaks) affect participants’ mood, cognitive performance, and neuro-physiological state.
Virtual reality environments are increasingly being used to encourage individuals to exercise more regularly, including as part of treatment in those with mental health or neurological disorders. The success of virtual environments likely depends on whether a sense of presence can be established, where participants become fully immersed in the virtual environment. Exposure to virtual environments is associated with physiological responses, including cortical activation changes. Whether the addition of a real exercise within a virtual environment alters sense of presence perception, or the accompanying physiological changes, is not known. In a randomized and controlled study design, trials of moderate-intensity exercise (i.e. self-paced cycling) and no-exercise (i.e. automatic propulsion) were performed within three levels of virtual environment exposure. Each trial was 5-min in duration and was followed by post-trial assessments of heart rate, perceived sense of presence, EEG, and mental state. Changes in psychological strain and physical state were generally mirrored by neural activation patterns. Furthermore these change indicated that exercise augments the demands of virtual environment exposures and this likely contributed to an enhanced sense of presence.
The number of studies on work breaks and the importance of this subject is growing rapidly, with research showing that work breaks increase employees’ wellbeing and performance and workplace safety. However, comparing the results of work break research is difficult since the study designs and methods are heterogeneous and there is no standard theoretical model for work breaks. Based on a systematic literature search, this scoping review included a total of 93 studies on experimental work break research conducted over the last 30 years. This scoping review provides a first structured evaluation regarding the underlying theoretical framework, the variables investigated, and the measurement methods applied. Studies using a combination of measurement methods from the categories “self-report measures,” “performance measures,” and “physiological measures” are most common and to be preferred in work break research. This overview supplies important information for ergonomics researchers allowing them to design work break studies with a more structured and stronger theory-based approach. A standard theoretical model for work breaks is needed in order to further increase the comparability of studies in the field of experimental work break research in the future.