Refine
Department, Institute
Document Type
- Article (30)
- Part of a Book (8)
- Conference Object (7)
- Preprint (1)
- Report (1)
Year of publication
Keywords
- stem cells (7)
- Regenerative medicine (4)
- Tissue engineering (4)
- biomaterial (4)
- drug release (4)
- osteogenesis (4)
- Mesenchymal stem cells (3)
- Scaffolds (3)
- Stem cells (3)
- angiogenesis (3)
Embryonic stem cells (ES) have the potential of long-term viability, selfrenewal and pluripotency which makes them interesting candidates for tissue engineering and gene therapy applications. On the other hand ethical and political issues arise while using theses cells and severe problems such as their tumorgenicity have not been solved yet. In the last couple of month a new source of cells with stem cell character was developed, the induced pluripotent stem cells (iPS). These cells are derived from differentiated adult cells via transduction of three transcription factors and show features similar to embryonic stem cells. Unfortunately, this includes the tumorgenicity which is even higher in those cells since the transcription factor transduction needed until now, is performed with retrovial vectors, which have a tumor potential on their own. Thus, adult stem cells are investigated extensively as alternative source of self-renewing cells. Human mesenchymal stem cells (HMSCs), which have in addition the advantage of potential autologous transplantation, can be found in various differentiated tissues since they are needed for maintenance and repair. They can be differentiated in chondrogenic, osteogenic, adipogenic and myogenic lineages which makes them an excellent tool for future tissue replacement strategies.
Human mesenchymal stem cells (HMSCs) which are isolated from bone marrow stroma, peripheral blood, dermis, muscle and adipose tissue have the advantage of potential autologous transplantation ability. They can be differentiated into chondrogenic, osteogenic, adipogenic and myogenic lineages. Problems of stem cells from bone marrow are low cell numbers, low isolated volumes, pain, and to some extent ethical concerns. The isolation of mesenchymal stem cells from human adipose tissue was recently identified as an alternative source, since these cells are easy to obtain in big cell numbers. Adipose tissue is derived from embryonic mesoderm and contains a heterogeneous stromal cell population. To achieve lineage-specific differentiation of these cells they have to be cultured in media supplemented with appropriate factors. Inductions of the cells into multiple mesenchymal lineages resulted in the expression of several lineage-specific genes, proteins and specific metabolic activity. In conclusion, the potential benefit of the multi-germline capacity of HMSCs seems to be a promising approach for allogenic cell therapy and human tissue engineering.
Adult stem cells, including adipose tissue-derived mesenchymal stem cells (MSCs) or ectomesenchymal dental follicle cells (DFCs), attract considerable attention for their potential to differentiate into lineages, which are of major interest in the field of Regenerative Medicine. Purinergic receptors exert a wide range of biological actions in many cell and tissue types through extracellular nucleotides. Little is known about P2 receptors in adult stem cells and changes in their expression levels during differentiation. All known P2 receptors have been investigated, and a variety of P2X and P2Y receptor subtypes were detected in MSCs. Studies investigating intracellular calcium levels on receptor stimulation demonstrated that the found P2 receptors are metabolically active. Interestingly, up- or downregulation of several P2 receptor subtypes at gene and protein level was observed during adipogenic and osteogenic differentiation, and the effect on differentiation was directly influenced by both the application of agonists/antagonists and apyrase-induced nucleotide cleavage. Here, we show for the first time that the combination of several P2 receptors plays a role in the differentiation of adult stem cells. The expression pattern of the P2 receptors, as well as their fate in differentiation, varies in stem cells of mesenchymal origin if compared with stem cells of ectomesenchymal origin. The subtypes P2X6, P2Y4, and P2Y14 seem to be pivotal regulators in MSC commitment, as they are regulated in both adipogenic and osteogenic differentiation of adipose tissue-derived stem cells and DFCs. These findings provide new insights into the differentiation processes and might reveal novel options to influence stem cell fate in future applications.
Atherosclerosis is a chronic disease of the arteries and accounts for about 50 percent of all deaths in industrialized countries. For its treatment, patients primarily need to undergo lifestyle changes, concerning their diet or sportive behavior, while additional pharmaceutical approaches help to reduce major risk factors such as hypertension and hyperlipidemia. However, these two areas of treatment are only briefly mentioned here. Instead, this article focuses on literature and patents from the last decade focusing on invasive surgical procedures necessary for treatment of diseased blood vessels in severe cases of atherosclerosis. Described herein are synthetic grafts and so-called autografts, which are harvested from the patient for bypass surgery. In addition, implantable stents are discussed, which deal with different atherosclerotic aspects, such as restenosis, re-endothelialization, neointimal hyperplasia and thrombosis. And finally, publications and inventions are presented from the relatively new field of artificial tissue engineering incorporating stem cells or biomaterials to construct new vessels as substitutes for diseased veins and arteries.
Transient up-regulation of P2 receptors influence differentiation of human mesenchymal stem cells
(2012)
Despite recent advances in medical procedures, cardiovascular disease remains a clinical challenge and the leading cause of mortality in the western world. The condition causes progressive smooth muscle cell (SMC) dedifferentiation, proliferation, and migration that contribute to vascular restenosis. The incidence of disease of the internal mammary artery (IMA), however, is much lower than in nearly all other arteries. The etiology of this IMA disease resistance is not well understood. Here, using paired primary IMA and coronary artery SMCs, serum stimulation, siRNA knockdowns, and verifications in porcine vessels in vivo, we investigate the molecular mechanisms that could account for this increased disease resistance of internal mammary SMCs. We show that the residue-specific phosphorylation profile of the retinoblastoma tumor suppressor protein (Rb) appears to differ significantly between IMA and coronary artery SMCs in cultured human cells. We also report that the differential profile of Rb phosphorylation may follow as a consequence of differences in the content of cyclin-dependent kinase 2 (CDK2) and the CDK4 phosphorylation inhibitor p15. Finally, we present evidence that siRNA-mediated CDK2 knockdown alters the profile of Rb phosphorylation in coronary artery SMCs, as well as the proliferative response of these cells to mitogenic stimulation. The intrinsic functional and protein composition specificity of the SMCs population in the coronary artery may contribute to the increased prevalence of restenosis and atherosclerosis in the coronary arteries as compared with the internal mammary arteries.
Renewable resources gain increasing interest as source for environmentally benign biomaterials, such as drug encapsulation/release compounds, and scaffolds for tissue engineering in regenerative medicine. Being the second largest naturally abundant polymer, the interest in lignin valorization for biomedical utilization is rapidly growing. Depending on resource and isolation procedure, lignin shows specific antioxidant and antimicrobial activity. Today, efforts in research and industry are directed toward lignin utilization as renewable macromolecular building block for the preparation of polymeric drug encapsulation and scaffold materials. Within the last five years, remarkable progress has been made in isolation, functionalization and modification of lignin and lignin-derived compounds. However, literature so far mainly focuses lignin-derived fuels, lubricants and resins. The purpose of this review is to summarize the current state of the art and to highlight the most important results in the field of lignin-based materials for potential use in biomedicine (reported in 2014–2018). Special focus is drawn on lignin-derived nanomaterials for drug encapsulation and release as well as lignin hybrid materials used as scaffolds for guided bone regeneration in stem cell-based therapies.
Healing of large bone defects requires implants or scaffolds that provide structural guidance for cell growth, differentiation, and vascularization. In the present work, an agarose-hydroxyapatite composite scaffold was developed that acts not only as a 3D matrix, but also as a release system. Hydroxyapatite (HA) was incorporated into the agarose gels in situ in various ratios by a simple procedure consisting of precipitation, cooling, washing, and drying. The resulting gels were characterized regarding composition, porosity, mechanical properties, and biocompatibility. A pure phase of carbonated HA was identified in the scaffolds, which had pore sizes of up to several hundred micrometers. Mechanical testing revealed elastic moduli of up to 2.8 MPa for lyophilized composites. MTT testing on Lw35human mesenchymal stem cells (hMSCs) and osteosarcoma MG-63 cells proved the biocompatibility of the scaffolds. Furthermore, scaffolds were loaded with model drug compounds for guided hMSC differentiation. Different release kinetic models were evaluated for adenosine 5′-triphosphate (ATP) and suramin, and data showed a sustained release behavior over four days.
This review is divided into two interconnected parts, namely a biological and a chemical one. The focus of the first part is on the biological background for constructing tissue-engineered vascular grafts to promote vascular healing. Various cell types, such as embryonic, mesenchymal and induced pluripotent stem cells, progenitor cells and endothelial- and smooth muscle cells will be discussed with respect to their specific markers. The in vitro and in vivo models and their potential to treat vascular diseases are also introduced. The chemical part focuses on strategies using either artificial or natural polymers for scaffold fabrication, including decellularized cardiovascular tissue. An overview will be given on scaffold fabrication including conventional methods and nanotechnologies. Special attention is given to 3D network formation via different chemical and physical cross-linking methods. In particular, electron beam treatment is introduced as a method to combine 3D network formation and surface modification. The review includes recently published scientific data and patents which have been registered within the last decade.
Background and Objectives: In advanced β-cell dysfunction, proinsulin is increasingly replacing insulin as major component of the secretion product. It has been speculated that proinsulin has at least the same adipogenic potency than insulin, leading to an increased tendency of lipid tissue formation in patients with late stage β-cell dysfunction. Methods and Results: Mesenchymal stem cells obtained from liposuction material were grown in differentiation media containing insulin (0.01 μmol), proinsulin (0.01 μmol) or insulin+proinsulin (each 0.005 μmol). Cell culture supernatants were taken from these experiments and an untreated control at weeks 1, 2, and 3, and were stored at -80°C until analysis. Cell differentiation was microscopically supervised and adiponectin concentrations were measured as marker for differentiation into mature lipid cells. This experiment was repeated three times. No growth of lipid cells and no change in adiponectin values was observed in the negative control group (after 7/14/12 days: 3.2±0.5/3.3±0.1/4.4±0.5 ng/ml/12 h). A continuous differentiation into mature adipocytes (also confirmed by Red-Oil-staining) and a corresponding increase in adiponectin values was observed in the experiments with insulin (3.6±1.9/5.1±1.4/13.3±1.5 ng/ml/12 h; p<0.05 week 1 vs. week 3) and proinsulin (3.3±1.2/3.5±0.3/12.2±1.2 ng/ml/12 h; p<0.05). Comparable effects were seen with the insulin/proinsulin combination. Conclusions: Proinsulin has the same adipogenic potential than insulin in vitro. Proinsulin has only 10∼20% of the glucose-lowering effect of insulin. It can be speculated that the adipogenic potential of proinsulin may be a large contributor to the increased body weight problems in patients with type 2 diabetes and advanced β-cell dysfunction.
Human mesenchymal stem cells (hMSCs) are considered a promising cell source for regenerative medicine, because they have the potential to differentiate into a variety of lineages among which the mesoderm-derived lineages such adipo- or osteogenesis are investigated best. Human MSCs can be harvested in reasonable to large amounts from several parts of the patient’s body and due to this possible autologous origin, allorecognition can be avoided. In addition, even in allogenic origin-derived donor cells, hMSCs generate a local immunosuppressive microenvironment, causing only a weak immune reaction. There is an increasing need for bone replacement in patients from all ages, due to a variety of reasons such as a new recreational behavior in young adults or age-related diseases. Adipogenic differentiation is another interesting lineage, because fat tissue is considered to be a major factor triggering atherosclerosis that ultimately leads to cardiovascular diseases, the main cause of death in industrialized countries. However, understanding the differentiation process in detail is obligatory to achieve a tight control of the process for future clinical applications to avoid undesired side effects. In this review, the current findings for adipo- and osteo-differentiation are summarized together with a brief statement on first clinical trials.
Bone tissue engineering is an ever-changing, rapidly evolving, and highly interdisciplinary field of study, where scientists try to mimic natural bone structure as closely as possible in order to facilitate bone healing. New insights from cell biology, specifically from mesenchymal stem cell differentiation and signaling, lead to new approaches in bone regeneration. Novel scaffold and drug release materials based on polysaccharides gain increasing attention due to their wide availability and good biocompatibility to be used as hydrogels and/or hybrid components for drug release and tissue engineering. This article reviews the current state of the art, recent developments, and future perspectives in polysaccharide-based systems used for bone regeneration.