Refine
Department, Institute
Document Type
- Conference Object (13)
- Article (3)
Keywords
- 3D user interface (3)
- 3D user interfaces (2)
- peripheral vision (2)
- 3D User Interface (1)
- Augmented Reality (1)
- Augmented reality (1)
- Challenges (1)
- Games (1)
- Hand Guidance (1)
- Head Mounted Display (1)
We report on two experiments that deploy low-frequency audio and strong vibrations to induce haptic-like sensations throughout the human body. Vibration is quite frequently deployed in immersive systems, for example to provide collision feedback, but its actual effects are not well understood [Kruijff & Pander 2005; Kruijff et al. 2015]. The starting point of our experiments was a study by Rasmussen [Rasmussen 1982], which found that different vibration frequencies were experienced differently throughout the body. We will show how vibrations affect sensations throughout the body and may provide some directional cues to some parts of the body, yet also illustrate the difficulties.
Supported by their large size and high resolution, display walls suit well for different collaboration types. However, in order to foster instead of impede collaboration processes, interaction techniques need to be carefully designed, taking into regard the possibilities and limitations of the display size, and their effects on human perception and performance. In this paper we investigate the impact of visual distractors (which, for instance, might be caused by other collaborators' input) in peripheral vision on short-term memory and attention. The distractors occur frequently when multiple users collaborate in large wall display systems and may draw attention away from the main task, as such potentially affecting performance and cognitive load. Yet, the effect of these distractors is hardly understood. Gaining a better understanding thus may provide valuable input for designing more effective user interfaces. In this article, we report on two interrelated studies that investigated the effect of distractors. Depending on when the distractor is inserted in the task performance sequence, as well as the location of the distractor, user performance can be disturbed: we will show that distractors may not affect short term memory, but do have an effect on attention. We will closely look into the effects, and identify future directions to design more effective interfaces.
In this article, we report on a user study investigating the effects of multisensory cues on triggering the emotional response in immersive games. Yet, isolating the effect of a specific sensory cue on the emotional state is a difficult feat. The performed experiment is a first of a series that aims at producing usable guidelines that can be applied to reproducing similar emotional responses, as well as the methods to measure the effects. As such, we are interested in methodologies to both design effective stimuli, and assess the quality and effect thereof. We start with identifying main challenges and the followed methodology. Thereafter, we closely analyze the study results to address some of the challenges, and identify where the potential is for improving the induced stimuli (cause) and effect, as well as the analytical methods used to pinpoint the extent of the effect.
In diesem Artikel wird darüber berichtet, ob die Glaubwürdigkeit von Avataren als mögliches Modulationskriterium für die virtuelle Expositionstherapie von Agoraphobie in Frage kommt. Dafür werden mehrere Glaubwürdigkeitsstufen für Avatare, die hypothetisch einen Einfluss auf die virtuelle Expositionstherapie von Agoraphobie haben könnten sowie ein potentielles Expositionsszenario entwickelt. Die Arbeit kann innerhalb einer Studie einen signifikanten Einfluss der Glaubwürdigkeitsstufen auf Präsenz, Kopräsenz und Realismus aufzeigen.
In this article, we report on challenges and potential methodologies to support the design and validation of multisensory techniques. Such techniques can be used for enhancing engagement in immersive systems. Yet, designing effective techniques requires careful analysis of the effect of different cues on user engagement. The level of engagement spans the general level of presence in an environment, as well as the specific emotional response to a set trigger. Yet, measuring and analyzing the actual effect of cues is hard as it spans numerous interconnected issues. In this article, we identify the different challenges and potential validation methodologies that affect the analysis of multisensory cues on user engagement. In doing so, we provide an overview of issues and potential validation directions as an entry point for further research. The various challenges are supported by lessons learned from a pilot study, which focused on reflecting the initial validation methodology by analyzing the effect of different stimuli on user engagement.
When navigating larger virtual environments and computer games, natural walking is often unfeasible. Here, we investigate how alternatives such as joystick- or leaning-based locomotion interfaces ("human joystick") can be enhanced by adding walking-related cues following a sensory substitution approach. Using a custom-designed foot haptics system and evaluating it in a multi-part study, we show that adding walking related auditory cues (footstep sounds), visual cues (simulating bobbing head-motions from walking), and vibrotactile cues (via vibrotactile transducers and bass-shakers under participants' feet) could all enhance participants' sensation of self-motion (vection) and involement/presence. These benefits occurred similarly for seated joystick and standing leaning locomotion. Footstep sounds and vibrotactile cues also enhanced participants' self-reported ability to judge self-motion velocities and distances traveled. Compared to seated joystick control, standing leaning enhanced self-motion sensations. Combining standing leaning with a minimal walking-in-place procedure showed no benefits and reduced usability, though. Together, results highlight the potential of incorporating walking-related auditory, visual, and vibrotactile cues for improving user experience and self-motion perception in applications such as virtual reality, gaming, and tele-presence.
The study of locomotion in virtual environments is a diverse and rewarding research area. Yet, creating effective and intuitive locomotion techniques is challenging, especially when users cannot move around freely. While using handheld input devices for navigation may often be good enough, it does not match our natural experience of motion in the real world. Frequently, there are strong arguments for supporting body-centered self-motion cues as they may improve orientation and spatial judgments, and reduce motion sickness. Yet, how these cues can be introduced while the user is not moving around physically is not well understood. Actuated solutions such as motion platforms can be an option, but they are expensive and difficult to maintain. Alternatively, within this article we focus on the effect of upper-body tilt while users are seated, as previous work has indicated positive effects on self-motion perception. We report on two studies that investigated the effects of static and dynamic upper body leaning on perceived distances traveled and self-motion perception (vection). Static leaning (i.e., keeping a constant forward torso inclination) had a positive effect on self-motion, while dynamic torso leaning showed mixed results. We discuss these results and identify further steps necessary to design improved embodied locomotion control techniques that do not require actuated motion platforms.
We present a novel, multilayer interaction approach that enables state transitions between spatially above-screen and 2D on-screen feedback layers. This approach supports the exploration of haptic features that are hard to simulate using rigid 2D screens. We accomplish this by adding a haptic layer above the screen that can be actuated and interacted with (pressed on) while the user interacts with on-screen content using pen input. The haptic layer provides variable firmness and contour feedback, while its membrane functionality affords additional tactile cues like texture feedback. Through two user studies, we look at how users can use the layer in haptic exploration tasks, showing that users can discriminate well between different firmness levels, and can perceive object contour characteristics. Demonstrated also through an art application, the results show the potential of multilayer feedback to extend on-screen feedback with additional widget, tool and surface properties, and for user guidance.
This paper introduces FaceHaptics, a novel haptic display based on a robot arm attached to a head-mounted virtual reality display. It provides localized, multi-directional and movable haptic cues in the form of wind, warmth, moving and single-point touch events and water spray to dedicated parts of the face not covered by the head-mounted display.The easily extensible system, however, can principally mount any type of compact haptic actuator or object. User study 1 showed that users appreciate the directional resolution of cues, and can judge wind direction well, especially when they move their head and wind direction is adjusted dynamically to compensate for head rotations. Study 2 showed that adding FaceHaptics cues to a VR walkthrough can significantly improve user experience, presence, and emotional responses.
In Augmented Reality (AR), search performance for outdoor tasks is an important metric for evaluating the success of a large number of AR applications. Users must be able to find content quickly, labels and indicators must not be invasive but still clearly noticeable, and the user interface should maximize search performance in a variety of conditions. To address these issues, we have set up a series of experiments to test the influence of virtual characteristics such as color, size, and leader lines on the performance of search tasks and noticeability in both real and simulated environments. The first experiment showed that limited FOV will severe-ly limit search performance, but that appropriate placement of labels and leaders within the periphery can alleviate this problem without interfering with walking or decreasing user comfort. In the second experiment, we found that different types of motion are more no-ticeable in optical versus video see-through displays, but that blue coloration is most noticeable in both. Results can aid in designing more effective view management techniques, especially for wider field of view display.
In presence of conflicting or ambiguous visual cues in complex scenes, performing 3D selection and manipulation tasks can be challenging. To improve motor planning and coordination, we explore audio-tactile cues to inform the user about the presence of objects in hand proximity, e.g., to avoid unwanted object penetrations. We do so through a novel glove-based tactile interface, enhanced by audio cues. Through two user studies, we illustrate that proximity guidance cues improve spatial awareness, hand motions, and collision avoidance behaviors, and show how proximity cues in combination with collision and friction cues can significantly improve performance.
We present a novel forearm-and-glove tactile interface that can enhance 3D interaction by guiding hand motor planning and coordination. In particular, we aim to improve hand motion and pose actions related to selection and manipulation tasks. Through our user studies, we illustrate how tactile patterns can guide the user, by triggering hand pose and motion changes, for example to grasp (select) and manipulate (move) an object. We discuss the potential and limitations of the interface, and outline future work.