Refine
Departments, institutes and facilities
Document Type
- Conference Object (8)
- Article (6)
Language
- English (14)
Has Fulltext
- no (14)
Keywords
- Equipment and services (2)
- Heterodyning (2)
- Optics (2)
- Oscillators (2)
- Receivers (2)
- Sensors (2)
- bolometers (2)
- Electrical noise (1)
- Electromagnetic wave propagation (1)
- Fourier optics (1)
Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.
To make best use of the exceptional good weather conditions at Chajnantor we developed CHAMP+, a two time seven pixel dual-color heterodyne array for operation in the 350 and 450 µm atmospheric windows. CHAMP+ uses state-of-the-art SIS-mixers provided by our collaborators at SRON. To maximize its performance, optical single sideband filter are implemented for each of the two subarrays, and most of the optics is operated cold (20K) to minimize noise contributions. The instrument can be operated remotely, under full computer control of all components. The autocorrelator backend, currently in operation with 2 × 1GHz of bandwidth for each of the 14 heterodyne channels, will be upgraded by a new technologies FFT spectrometer array in mid 2008. CHAMP+ has been commissioned successfully in late 2007. We will review the performance of the instrument "in the field," and present its characteristics as measured on-sky.
Kinetic Inductance Detectors with Integrated Antennas for Ground and Space-Based Sub-mm Astronomy
(2009)
Very large arrays of Microwave Kinetic Inductance Detectors (MKIDs) have the potential to revolutionize ground and space based astronomy. They can offer in excess of 10.000 pixels with large dynamic range and very high sensitivity in combination with very efficient frequency division multiplexing at GHz frequencies. In this paper we present the development of a 400 pixel MKID demonstration array, including optical coupling, sensitivity measurements, beam pattern measurements and readout. The design presented can be scaled to any frequency between 80 GHz and >5 THz because there is no need for superconducting structures that become lossy at frequencies above the gap frequency of the materials used. The latter would limit the frequency coverage to below 1 THz for relatively high gap materials such as NbTiN. An individual pixels of the array consist of a distributed Aluminium CPW MKID with an integrated twin slot antenna at its end. The antenna is placed in the in the second focus of an elliptical high purity Si lens. The lens-antenna coupling design allows room for the MKID resonator outside of the focal point of the lens. The best dark noise equivalent power of these devices is measured to be NEP = 7×10-19 W/[square root]Hz and the optical coupling efficiency is around 30%, in which no antireflection coating was used on the Si lens. For the readout we use a commercial arbitrary waveform generator and a 1.5 GHz FFTS. We show that using this concept it is possible to read out in excess of 400 pixels with 1 board and 1 pair of coaxial cables.
Microwave Kinetic Inductance Detectors have great potential for large very sensitive detector arrays for use in, for example, ground and spaced based sub?mm imaging. Being intrinsically readout in the frequency domain, they are particularly suited for frequency domain multiplexing allowing 1000s of devices to be readout with one pair of coaxial cables. However, this moves the complexity of the detector from the cryogenics to the warm electronics. We present the use of a readout based on a Fast Fourier transform Spectrometer, showing no deterioration of the noise performance compared to low noise analog mixing while allowing high multiplexing ratios (>100). We present use of this technique to multiplex 44 MKIDs, while this and similar setups are regularly now being used in our array development. This development will help the realization of large cameras, particularly in the short term for ground based astronomy.
Based on our reconfigurable FPGA spectrometer technology, we have developed a read-out system, operating in the frequency domain, for arrays of Microwave Kinetic Inductance Detectors (MKIDs). The readout consists of a combination of two digital boards: A programmable DAC-/FPGA-board (tone-generator) to stimulate the MKIDs detectors and an ADC-/FPGA-unit to analyze the detectors response. Laboratory measurement show no deterioration of the noise performance compared to low noise analog mixing. Thus, this technique allows capturing several hundreds of detector signals with just one pair of coaxial cables.