Refine
H-BRS Bibliography
- yes (12)
Departments, institutes and facilities
Document Type
- Article (6)
- Part of a Book (3)
- Preprint (2)
- Doctoral Thesis (1)
Keywords
- lignin (6)
- Antioxidant activity (3)
- Lignin (3)
- organosolv (3)
- Antimicrobial activity (2)
- Biomass (2)
- Folin-Ciocalteu assay (2)
- Lignocellulose feedstock (2)
- antimicrobial activity (2)
- antioxidant activity (2)
Renewable resources gain increasing interest as source for environmentally benign biomaterials, such as drug encapsulation/release compounds, and scaffolds for tissue engineering in regenerative medicine. Being the second largest naturally abundant polymer, the interest in lignin valorization for biomedical utilization is rapidly growing. Depending on resource and isolation procedure, lignin shows specific antioxidant and antimicrobial activity. Today, efforts in research and industry are directed toward lignin utilization as renewable macromolecular building block for the preparation of polymeric drug encapsulation and scaffold materials. Within the last five years, remarkable progress has been made in isolation, functionalization and modification of lignin and lignin-derived compounds. However, literature so far mainly focuses lignin-derived fuels, lubricants and resins. The purpose of this review is to summarize the current state of the art and to highlight the most important results in the field of lignin-based materials for potential use in biomedicine (reported in 2014–2018). Special focus is drawn on lignin-derived nanomaterials for drug encapsulation and release as well as lignin hybrid materials used as scaffolds for guided bone regeneration in stem cell-based therapies.
Renewable resources are gaining increasing interest as a source for environmentally benign biomaterials, such as drug encapsulation/release compounds, and scaffolds for tissue engineering in regenerative medicine. Being the second largest naturally abundant polymer, the interest in lignin valorization for biomedical utilization is rapidly growing. Depending on its resource and isolation procedure, lignin shows specific antioxidant and antimicrobial activity. Today, efforts in research and industry are directed toward lignin utilization as a renewable macromolecular building block for the preparation of polymeric drug encapsulation and scaffold materials. Within the last five years, remarkable progress has been made in isolation, functionalization and modification of lignin and lignin-derived compounds. However, the literature so far mainly focuses lignin-derived fuels, lubricants and resins. The purpose of this review is to summarize the current state of the art and to highlight the most important results in the field of lignin-based materials for potential use in biomedicine (reported in 2014⁻2018). Special focus is placed on lignin-derived nanomaterials for drug encapsulation and release as well as lignin hybrid materials used as scaffolds for guided bone regeneration in stem cell-based therapies.
The antiradical and antimicrobial activity of lignin and lignin-based films are both of great interest for applications such as food packaging additives. The polyphenolic structure of lignin in addition to the presence of O-containing functional groups is potentially responsible for these activities. This study used DPPH assays to discuss the antiradical activity of HPMC/lignin and HPMC/lignin/chitosan films. The scavenging activity (SA) of both binary (HPMC/lignin) and ternary (HPMC/lignin/chitosan) systems was affected by the percentage of the added lignin: the 5% addition showed the highest activity and the 30% addition had the lowest. Both scavenging activity and antimicrobial activity are dependent on the biomass source showing the following trend: organosolv of softwood > kraft of softwood > organosolv of grass. Testing the antimicrobial activities of lignins and lignin-containing films showed high antimicrobial activities against Gram-positive and Gram-negative bacteria at 35 °C and at low temperatures (0-7 °C). Purification of kraft lignin has a negative effect on the antimicrobial activity while storage has positive effect. The lignin release in the produced films affected the activity positively and the chitosan addition enhances the activity even more for both Gram-positive and Gram-negative bacteria. Testing the films against spoilage bacteria that grow at low temperatures revealed the activity of the 30% addition on HPMC/L1 film against both B. thermosphacta and P. fluorescens while L5 was active only against B. thermosphacta. In HPMC/lignin/chitosan films, the 5% addition exhibited activity against both B. thermosphacta and P. fluorescens.
Due to the use of fossil fuel resources, many environmental problems have been increasingly growing. Thus, the recent research focuses on the use of environment friendly materials from sustainable feedstocks for future fuels, chemicals, fibers and polymers. Lignocellulosic biomass has become the raw material of choice for these new materials. Recently, the research has focused on using lignin as a substitute material in many industrial applications. The antiradical and antimicrobial activity of lignin and lignin-based films are both of great interest for applications such as food packaging additives. DPPH assay was used to determine the antioxidant activity of Kraft lignin compared to Organosolv lignins from different biomasses. The purification procedure of Kraft lignin showed that double-fold selective extraction is the most efficient confirmed by UV-Vis, FTIR, HSQC, 31PNMR, SEC, and XRD. The antioxidant capacity was discussed regarding the biomass source, pulping process, and degree of purification. Lignin obtained from industrial black liquor are compared with beech wood samples: Biomass source influences the DPPH inhibition (softwood > grass) and the TPC (softwood < grass). DPPH inhibition affected by the polarity of the extraction solvent. Following the trend: ethanol > diethylether > acetone. Reduced polydispersity has positive influence on the DPPH inhibition. Storage decreased the DPPH inhibition but increased the TPC values. The DPPH assay was also used to discuss the antiradical activity of HPMC/lignin and HPMC/lignin/chitosan films. In both binary (HPMC/lignin) and ternary (HPMC/lignin/chitosan) systems the 5% addition showed the highest activity and the highest addition had the lowest. Both scavenging activity and antimicrobial activity are dependent on the biomass source; Organosolv of softwood > Kraft of softwood > Organosolv of grass. Lignins and lignin-containing films showed high antimicrobial activities against Gram-positive and Gram-negative bacteria at 35 °C and at low temperatures (0-7 °C). Purification of Kraft lignin has a negative effect on the antimicrobial activity while storage has positive effect. The lignin leaching in the produced films affected the activity positively and the chitosan addition enhances the activity for both Gram-positive and Gram-negative bacteria. Testing the films against food spoilage bacteria that grow at low temperatures revealed the activity of the 30% addition on HPMC/L1 film against both B. thermosphacta and P. fluorescens while L5 was active only against B. thermosphacta. In HPMC/lignin/chitosan films, the 5% addition exhibited activity against both food spoilage bacteria.
Antioxidant activity is an essential aspect of oxygen-sensitive merchandise and goods, such as food and corresponding packaging, cosmetics, and biomedicine. Technical lignin has not yet been applied as a natural antioxidant, mainly due to the complex heterogeneous structure and polydispersity of lignin. This report presents antioxidant capacity studies completed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The influence of purification on lignin structure and activity was investigated. The purification procedure showed that double-fold selective extraction is the most efficient (confirmed by ultraviolet-visible (UV/Vis), Fourier transform infrared (FTIR), heteronuclear single quantum coherence (HSQC) and 31P nuclear magnetic resonance spectroscopy, size exclusion chromatography, and X-ray diffraction), resulting in fractions of very narrow polydispersity (3.2⁻1.6), up to four distinct absorption bands in UV/Vis spectroscopy. Due to differential scanning calorimetry measurements, the glass transition temperature increased from 123 to 185 °C for the purest fraction. Antioxidant capacity is discussed regarding the biomass source, pulping process, and degree of purification. Lignin obtained from industrial black liquor are compared with beech wood samples: antioxidant activity (DPPH inhibition) of kraft lignin fractions were 62⁻68%, whereas beech and spruce/pine-mixed lignin showed values of 42% and 64%, respectively. Total phenol content (TPC) of the isolated kraft lignin fractions varied between 26 and 35%, whereas beech and spruce/pine lignin were 33% and 34%, respectively. Storage decreased the TPC values but increased the DPPH inhibition.
Antioxidant activity is an essential feature required for oxygen-sensitive merchandise and goods, such as food and corresponding packaging as well as materials used in cosmetics and biomedicine. For example, vanillin, one of the most prominent antioxidants, is fabricated from lignin, the second most abundant natural polymer in the world. Antioxidant potential is primarily related to the termination of oxidation propagation reactions through hydrogen transfer. The application of technical lignin as a natural antioxidant has not yet been implemented in the industrial sector, mainly due to the complex heterogeneous structure and polydispersity of lignin. Thus, current research focuses on various isolation and purification strategies to improve the compatibility of lignin material with substrates and enhancing its stabilizing effect.
Due to global ecological and economic challenges that have been correlated to the transition from fossil-based to renewable resources, fundamental studies are being performed worldwide to replace fossil fuel raw materials in plastic production. One aspect of current research is the development of lignin-derived polyols to substitute expensive fossil-based polyol components for polyurethane and polyester production. This article describes the synthesis of bioactive lignin-based polyurethane coatings using unmodified and demethylated Kraft lignins. Demethylation was performed to enhance the reaction selectivity toward polyurethane formation. The antimicrobial activity was tested according to a slightly modified standard test (JIS Z 2801:2010). Besides effects caused by the lignins themselves, triphenylmethane derivatives (brilliant green and crystal violet) were used as additional antimicrobial substances. Results showed increased antimicrobial capacity against Staphylococcus aureus. Furthermore, the coating color could be varied from dark brown to green and blue, respectively.
Lignocellulose feedstock (LCF) provides a sustainable source of components to produce bioenergy, biofuel, and novel biomaterials. Besides hard and soft wood, so-called low-input plants such as Miscanthus are interesting crops to be investigated as potential feedstock for the second generation biorefinery. The status quo regarding the availability and composition of different plants, including grasses and fast-growing trees (i.e., Miscanthus, Paulownia), is reviewed here. The second focus of this review is the potential of multivariate data processing to be used for biomass analysis and quality control. Experimental data obtained by spectroscopic methods, such as nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR), can be processed using computational techniques to characterize the 3D structure and energetic properties of the feedstock building blocks, including complex linkages. Here, we provide a brief summary of recently reported experimental data for structural analysis of LCF biomasses, and give our perspectives on the role of chemometrics in understanding and elucidating on LCF composition and lignin 3D structure.