Refine
H-BRS Bibliography
- yes (6)
Departments, institutes and facilities
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Keywords
- extremophile (2)
- melanin (2)
- Bacillus (1)
- DNA (1)
- DNA damage (1)
- Galactic Cosmic Rays (GCRs) (1)
- IR microspectroscopy (1)
- LET (1)
- Mars (1)
- Mars environment (1)
One of the primary current astrobiological goals is to understand the limits of microbial resistance to extraterrestrial conditions. Much attention is paid to ionizing radiation, since it can prevent the preservation and spread of life outside the Earth. The aim of this research was to study the impact of accelerated He ions (150 MeV/n, up to 1 kGy) as a component of the galactic cosmic rays on the black fungus C. antarcticus when mixed with Antarctic sandstones—the substratum of its natural habitat—and two Martian regolith simulants, which mimics two different evolutionary stages of Mars. The high dose of 1 kGy was used to assess the effect of dose accumulation in dormant cells within minerals, under long-term irradiation estimated on a geological time scale. The data obtained suggests that viable Earth-like microorganisms can be preserved in the dormant state in the near-surface scenario for approximately 322,000 and 110,000 Earth years within Martian regolith that mimic early and present Mars environmental conditions, respectively. In addition, the results of the study indicate the possibility of maintaining traces within regolith, as demonstrated by the identification of melanin pigments through UltraViolet-visible (UV-vis) spectrophotometric approach.
Extremophiles are optimal models in experimentally addressing questions about the effects of cosmic radiation on biological systems. The resistance to high charge energy (HZE) particles, and helium (He) ions and iron (Fe) ions (LET at 2.2 and 200 keV/µm, respectively, until 1000 Gy), of spores from two thermophiles, Bacillushorneckiae SBP3 and Bacilluslicheniformis T14, and two psychrotolerants, Bacillus sp. A34 and A43, was investigated. Spores survived He irradiation better, whereas they were more sensitive to Fe irradiation (until 500 Gy), with spores from thermophiles being more resistant to irradiations than psychrotolerants. The survived spores showed different germination kinetics, depending on the type/dose of irradiation and the germinant used. After exposure to He 1000 Gy, D-glucose increased the lag time of thermophilic spores and induced germination of psychrotolerants, whereas L-alanine and L-valine increased the germination efficiency, except alanine for A43. FTIR spectra showed important modifications to the structural components of spores after Fe irradiation at 250 Gy, which could explain the block in spore germination, whereas minor changes were observed after He radiation that could be related to the increased permeability of the inner membranes and alterations of receptor complex structures. Our results give new insights on HZE resistance of extremophiles that are useful in different contexts, including astrobiology.
Space exposure experiments from the last 15 years have unexpectedly shown that several terrestrial organisms, including some multi-cellular species, are able to survive in open space without protection. The robustness of bdelloid rotifers suggests that these tiny creatures can possibly be added to the still restricted list of animals that can deal with the exposure to harsh condition of space. Bdelloids are one of the smallest animals on Earth. Living all over the world, mostly in semi-terrestrial environments, they appear to be extremely stress tolerant. Their desiccation tolerance at any stage of their life cycle is known to confer tolerance to a variety of stresses including high doses of radiation and freezing. In addition, they constitute a major scandal in evolutionary biology due to the putative absence of sexual reproduction for at least 60 million years. Adineta vaga, with its unique characteristics and a draft genome available, was selected by ESA (European Space Agency) as a model system to study extreme resistance of organisms exposed to space environment. In this manuscript, we documented the resistance of desiccated A. vaga individuals exposed to increasing doses of X-ray, protons and Fe ions. Consequences of exposure to different sources of radiation were investigated in regard to the cellular type including somatic (survival assay) and germinal cells (fertility assay). Then, the capacity of A. vaga individuals to repair DNA DSB induced by different source of radiation was investigated. Bdelloid rotifers represent a promising model in order to investigate damage induced by high or low LET radiation. The possibility of exposure both on hydrated or desiccated specimens may help to decipher contribution of direct and indirect radiation damage on biological processes. Results achieved through this study consolidate our knowledge about the radioresistance of A. vaga and improve our capacity to compare extreme resistance against radiation among living organisms including metazoan.
The modern concept of the evolution of Mars assumes that life could potentially have originated on the planet Mars, possibly during the end of the late heavy bombardment, and could then be transferred to other planets. Since then, physical and chemical conditions on Mars changed and now strongly limit the presence of terrestrial-like life forms. These adverse conditions include scarcity of liquid water (although brine solutions may exist), low temperature and atmospheric pressure, and cosmic radiation. Ionizing radiation is very important among these life-constraining factors because it damages DNA and other cellular components, particularly in liquid conditions where radiation-induced reactive oxidants diffuse freely. Here, we investigated the impact of high doses (up to 2 kGy) of densely-ionizing (197.6 keV/µm), space-relevant iron ions (corresponding on the irradiation that reach the uppermost layer of the Mars subsurface) on the survival of an extremophilic terrestrial organism-Cryomyces antarcticus-in liquid medium and under atmospheric conditions, through different techniques. Results showed that it survived in a metabolically active state when subjected to high doses of Fe ions and was able to repair eventual DNA damages. It implies that some terrestrial life forms can withstand prolonged exposure to space-relevant ion radiation.
Among the celestial bodies in the Solar System, Mars currently represents the main target for the search for life beyond Earth. However, its surface is constantly exposed to high doses of cosmic rays (CRs) that may pose a threat to any biological system. For this reason, investigations into the limits of resistance of life to space relevant radiation is fundamental to speculate on the chance of finding extraterrestrial organisms on Mars. In the present work, as part of the STARLIFE project, the responses of dried colonies of the black fungus Cryomyces antarcticus Culture Collection of Fungi from Extreme Environments (CCFEE) 515 to the exposure to accelerated iron (LET: 200 keV/μm) ions, which mimic part of CRs spectrum, were investigated. Samples were exposed to the iron ions up to 1000 Gy in the presence of Martian regolith analogues. Our results showed an extraordinary resistance of the fungus in terms of survival, recovery of metabolic activity and DNA integrity. These experiments give new insights into the survival probability of possible terrestrial-like life forms on the present or past Martian surface and shallow subsurface environments.
A main factor hampering life in space is represented by high atomic number nuclei and energy (HZE) ions that constitute about 1% of the galactic cosmic rays. In the frame of the “STARLIFE” project, we accessed the Heavy Ion Medical Accelerator (HIMAC) facility of the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. By means of this facility, the extremophilic species Haloterrigena hispanica and Parageobacillus thermantarcticus were irradiated with high LET ions (i.e., Fe, Ar, and He ions) at doses corresponding to long permanence in the space environment. The survivability of HZE-treated cells depended upon either the storage time and the hydration state during irradiation; indeed, dry samples were shown to be more resistant than hydrated ones. With particular regard to spores of the species P. thermantarcticus, they were the most resistant to irradiation in a water medium: an analysis of the changes in their biochemical fingerprinting during irradiation showed that, below the survivability threshold, the spores undergo to a germination-like process, while for higher doses, inactivation takes place as a consequence of the concomitant release of the core’s content and a loss of integrity of the main cellular components. Overall, the results reported here suggest that the selected extremophilic microorganisms could serve as biological model for space simulation and/or real space condition exposure, since they showed good resistance to ionizing radiation exposure and were able to resume cellular growth after long-term storage.