Refine
Departments, institutes and facilities
Document Type
- Conference Object (14)
- Article (3)
- Part of a Book (1)
- Report (1)
Year of publication
Keywords
- energy efficiency (2)
- 6LoWPAN (1)
- AgroTICs (1)
- Bluetooth (1)
- Chaos communications (1)
- Chaotic Transceiver (1)
- FM Modulation (1)
- Internet of Things (1)
- LoRaWAN (1)
- OFDM-based DCSK (1)
En el siguiente trabajo se presentan las diferentes alternativas tecnológicas que brindarán soporte para las comunicaciones en el Proyecto Campo Conectado, priorizando el bajo consumo y mantenimiento. Esta plataforma de transmisión proveerá la conectividad necesaria para la recolección y envío de los datos requeridos por los productores agropecuarios, con el fin de mejorar la gestión de los procesos productivos y comerciales. Se comenta además los orígenes del proyecto y los actores involucrados en el mismo, destacándose el trabajo interinstitucional e interdisciplinar que se lleva a cabo.
In this paper, the performance evaluation of Frequency Modulated Chaotic On-Off Keying (FM-COOK) in AWGN, Rayleigh and Rician fading channels is given. The simulation results show that an improvement in BER can be gained by incorporating the FM modulation with COOK for SNR values less than 10dB in AWGN case and less than 6dB for Rayleigh and Rician fading channels.
Cost efficient energy monitoring in existing large buildings demands for autonomous indoor sensors with low power consumption, high performance in multipath fading channels and economic implementation. Good performance in multipath fading channels can be achieved with noncoherent chaotic modulation schemes such as chaos on-off keying (COOK) or differential chaos shift keying (DCSK). While COOK stands out in the area of power consumption, DCSK excels when it comes to its performance in noisy and multipath fading channels. This paper evaluates a combination of both schemes for autonomous indoor sensors. The simulation results show 50% less power consumption than DCSK and more than 3dB SNR gain in Rayleigh fading channels at BER=10-3 as compared to COOK, making it a promising candidate for low power transmission in autonomous wireless indoor sensors. We further present an enhanced version of this scheme showing another 1 dB SNR improvement, but at 25% less power consumption than DCSK.
Design and Analysis of an OFDM-Based Orthogonal Chaotic Vector Shift Keying Communication System
(2018)
We propose a new non-coherent multicarrier spread-spectrum system that combines orthogonal chaotic vector shift keying (OCVSK) and orthogonal frequency-division multiplexing (OFDM). The system enhances OCVSK by sending multiple groups of information sequences with the same orthogonal chaotic vector reference sequences over the selected subcarriers. Each group carries M information bits and is separated from other groups by orthogonal chaotic reference signals. We derive the information rate enhancement (IRE) and the energy saving enhancement (ESE) factors as well as the bit error rate theory of OFDM-OCVSK under additive white Gaussian noise and multipath Rayleigh fading channels and compare the results with conventional OCVSK systems. For large group numbers, the results show that the IRE and ESE factors approachM×100% andM/(M+1)×100%, respectively, and thus outperform OCVSK systems. The complexity analysis of the proposed scheme as compared with OFDM-DCSK shows a significant reduction in the number of complex multiplications required.
On the design and performance of a hybrid-integrated high-T c superconducting C-band oscillator
(1992)
A novel multidimensional index modulation-based differential chaos shift keying (DCSK) technique, designated as Joint Subcarrier Time Reference Index Modulation-aided Differential Chaos Shift Keying (JSTRIM-DCSK), is proposed for efficient data transmission in chaotic communication systems. The JSTRIM-DCSK system integrates subcarrier, time slot, and reference signal indexing to transmit information and offers two variants: JSTRIM-DCSK-I and JSTRIM-DCSK-II. The data is organized into L subblocks, each containing Ns subcarrier index bits ps and Nt time slot index bits pt , reference index bits pr , and modulated bits pm . The subcarrier and time slot index bits jointly select an active or inactive subcarrier time slot combination from a total of Ns ⋅ Nt possibilities, categorizing the system as either JSTRIM-DCSK-I (active) or JSTRIM-DCSK-II (inactive). The reference indexed bits select a single chaotic reference signal from Nr orthogonal chaotic vectors generated using the Gram-Schmidt orthogonalization process. The modulated bits are transmitted using a DCSK modulation scheme. Analytical expressions for the bit error rate (BER) performance of the JSTRIM-DCSK system are derived under both additive white Gaussian noise (AWGN) and multipath Rayleigh fading channel (MRFC) conditions. Furthermore, the potential for energy savings, bandwidth efficiency, and system complexity of the JSTRIM-DCSK system are thoroughly analyzed and compared with those of the existing techniques. The simulation results validate the analytical expressions and demonstrate the potential of JSTRIM-DCSK to achieve high data rates, efficient energy savings, and a competitive BER performance.