### Refine

#### Department, Institute

#### Document Type

- Conference Object (25)
- Article (5)
- Report (2)
- Book (1)
- Part of a Book (1)
- Diploma Thesis (1)
- Doctoral Thesis (1)
- Preprint (1)

#### Year of publication

#### Keywords

- Aerodynamics (2)
- MAP-Elites (2)
- Quality Diversity (2)
- Surrogate Modeling (2)
- 3D design (1)
- Computer Automated Design (1)
- Electric mobility (1)
- Evolutionary algorithms (1)
- Field Study (1)
- Genetic algorithm (1)

The use of wearable devices or "wearables" in the physical activity domain has been increasing in the last years. These devices are used as training tools providing the user with detailed information about individual physiological responses and feedback to the physical training process.
Advantages in sensor technology, miniaturization, energy consumption and processing power increased the usability of these wearables. Furthermore, available sensor technologies must be reliable, valid and usable. Considering the variety of the existing sensors not all of them are suitable to be integrated in wearables.
The application and development of wearables has to consider the characteristics of the physical training process to improve the effectiveness and efficiency as training tools. During physical training, it is essential to elicit individual optimal strain to evoke the desired adjustments to training. One important goal is to neither overstrain nor under challenge the user. Many wearables use heart rate as indicator for this individual strain. However, due to a variety of internal and external influencing factors, heart rate kinetics are highly variable making it difficult to control the stress eliciting individually optimal strain.

Surrogate-assistance approaches have long been used in computationally expensive domains to improve the data-efficiency of optimization algorithms. Neuroevolution, however, has so far resisted the application of these techniques because it requires the surrogate model to make fitness predictions based on variable topologies, instead of a vector of parameters. Our main insight is that we can sidestep this problem by using kernel-based surrogate models, which require only the definition of a distance measure between individuals. Our second insight is that the well-established Neuroevolution of Augmenting Topologies (NEAT) algorithm provides a computationally efficient distance measure between dissimilar networks in the form of "compatibility distance", initially designed to maintain topological diversity. Combining these two ideas, we introduce a surrogate-assisted neuroevolution algorithm that combines NEAT and a surrogate model built using a compatibility distance kernel. We demonstrate the data-efficiency of this new algorithm on the low dimensional cart-pole swing-up problem, as well as the higher dimensional half-cheetah running task. In both tasks the surrogate-assisted variant achieves the same or better results with several times fewer function evaluations as the original NEAT.

An iterative computer-aided ideation procedure is introduced, building on recent quality-diversity algorithms, which search for diverse as well as high-performing solutions. Dimensionality reduction is used to define a similarity space, in which solutions are clustered into classes. These classes are represented by prototypes, which are presented to the user for selection. In the next iteration, quality-diversity focuses on searching within the selected class. A quantitative analysis is performed on a 2D airfoil, and a more complex 3D side view mirror domain shows how computer-aided ideation can help to enhance engineers' intuition while allowing their design decisions to influence the design process.

Design optimization techniques are often used at the beginning of the design process to explore the space of possible designs. In these domains illumination algorithms, such as MAP-Elites, are promising alternatives to classic optimization algorithms because they produce diverse, high-quality solutions in a single run, instead of only a single near-optimal solution. Unfortunately, these algorithms currently require a large number of function evaluations, limiting their applicability. In this article we introduce a new illumination algorithm, Surrogate-Assisted Illumination (SAIL), that leverages surrogate modeling techniques to create a map of the design space according to user-defined features while minimizing the number of fitness evaluations. On a two-dimensional airfoil optimization problem SAIL produces hundreds of diverse but high-performing designs with several orders of magnitude fewer evaluations than MAP-Elites or CMA-ES. We demonstrate that SAIL is also capable of producing maps of high-performing designs in realistic three-dimensional aerodynamic tasks with an accurate flow simulation. Data-efficient design exploration with SAIL can help designers understand what is possible, beyond what is optimal, by considering more than pure objective-based optimization.

Neuroevolution methods evolve the weights of a neural network, and in some cases the topology, but little work has been done to analyze the effect of evolving the activation functions of individual nodes on network size, an important factor when training networks with a small number of samples. In this work we extend the neuroevolution algorithm NEAT to evolve the activation function of neurons in addition to the topology and weights of the network. The size and performance of networks produced using NEAT with uniform activation in all nodes, or homogenous networks, is compared to networks which contain a mixture of activation functions, or heterogenous networks. For a number of regression and classification benchmarks it is shown that, (1) qualitatively different activation functions lead to different results in homogeneous networks, (2) the heterogeneous version of NEAT is able to select well performing activation functions, (3) the produced heterogeneous networks are significantly smaller than homogeneous networks.

The Fitness Fatigue model is often used for performance analysis. It uses an initial basic level of performance and two antagonistic terms: a fitness-term and a fatigue-term. By fitting the models parameters, we adapt the model to the subject’s individual physical response to strain. Even though in most cases fitting of recorded training data shows useful results, without modification the model cannot be simply used for prediction.

Maximal covering location problems have efficiently been solved using evolutionary computation. The multi-stage placement of charging stations for electric cars is an instance of this problem which is addressed in this study. It is particularly challenging, because a final solution is constructed in multiple steps, stations cannot be relocated easily and intermediate solutions should be optimal with respect to certain objectives.

A new method for design space exploration and optimization, Surrogate-Assisted Illumination (SAIL), is presented. Inspired by robotics techniques designed to produce diverse repertoires of behaviors for use in damage recovery, SAIL produces diverse designs that vary according to features specified by the designer. By producing high-performing designs with varied combinations of user-defined features a map of the design space is created. This map illuminates the relationship between the chosen features and performance, and can aid designers in identifying promising design concepts. SAIL is designed for use with compu-tationally expensive design problems, such as fluid or structural dynamics, and integrates approximative models and intelligent sampling of the objective function to minimize the number of function evaluations required. On a 2D airfoil optimization problem SAIL is shown to produce hundreds of diverse designs which perform competitively with those found by state-of-the-art black box optimization. Its capabilities are further illustrated in a more expensive 3D aerodynamic optimization task.

The MAP-Elites algorithm produces a set of high-performing solutions that vary according to features defined by the user. This technique to 'illuminate' the problem space through the lens of chosen features has the potential to be a powerful tool for exploring design spaces, but is limited by the need for numerous evaluations. The Surrogate-Assisted Illumination (SAIL) algorithm, introduced here, integrates approximative models and intelligent sampling of the objective function to minimize the number of evaluations required by MAP-Elites.
The ability of SAIL to efficiently produce both accurate models and diverse high-performing solutions is illustrated on a 2D airfoil design problem. The search space is divided into bins, each holding a design with a different combination of features. In each bin SAIL produces a better performing solution than MAP-Elites, and requires several orders of magnitude fewer evaluations. The CMA-ES algorithm was used to produce an optimal design in each bin: with the same number of evaluations required by CMA-ES to find a near-optimal solution in a single bin, SAIL finds solutions of similar quality in every bin.

The MAP-Elites algorithm produces a set of high-performing solutions that vary according to features defined by the user. This technique has the potential to be a powerful tool for design space exploration, but is limited by the need for numerous evaluations. The Surrogate-Assisted Illumination algorithm (SAIL), introduced here, integrates approximative models and intelligent sampling of the objective function to minimize the number of evaluations required by MAP-Elites.
The ability of SAIL to efficiently produce both accurate models and diverse high performing solutions is illustrated on a 2D airfoil design problem. The search space is divided into bins, each holding a design with a different combination of features. In each bin SAIL produces a better performing solution than MAP-Elites, and requires several orders of magnitude fewer evaluations. The CMA-ES algorithm was used to produce an optimal design in each bin: with the same number of evaluations required by CMA-ES to find a near-optimal solution in a single bin, SAIL finds solutions of similar quality in every bin.

During exercise, heart rate has proven to be a good measure in planning workouts. It is not only simple to measure but also well understood and has been used for many years for workout planning. To use heart rate to control physical exercise, a model which predicts future heart rate dependent on a given strain can be utilized. In this paper, we present a mathematical model based on convolution for predicting the heart rate response to strain with four physiologically explainable parameters. This model is based on the general idea of the Fitness-Fatigue model for performance analysis, but is revised here for heart rate analysis. Comparisons show that the Convolution model can compete with other known heart rate models. Furthermore, this new model can be improved by reducing the number of parameters. The remaining parameter seems to be a promising indicator of the actual subject’s fitness.

Analyzing training performance in sport is usually based on standardized test protocols and needs laboratory equipment, e.g., for measuring blood lactate concentration or other physiological body parameters. Avoiding special equipment and standardized test protocols, we show that it is possible to reach a quality of performance simulation comparable to the results of laboratory studies using training models with nothing but training data. For this purpose, we introduce a fitting concept for a performance model that takes the peculiarities of using training data for the task of performance diagnostics into account. With a specific way of data preprocessing, accuracy of laboratory studies can be achieved for about 50% of the tested subjects, while lower correlation of the other 50% can be explained.

The Fitness-Fatigue model (Calvert et al. 1976) is widely used for performance analysis. This antagonistic model is based on a fitness-term, a fatigue-term, and an initial basic level of performance. Instead of generic parameter values, individualizing the model needs a fitting of parameters. With fitted parameters, the model adapts to account for individual responses to strain. Even though in most cases fitting of recorded training data shows useful results, without modification the model cannot be simply used for prediction.

Aufgrund eines nahezu gleichlautenden Beschlusses des Kreistages im Rhein-Sieg-Kreis (RSK) und des Hauptausschusses der Stadt Bonn im Jahr 2011 wurden die jeweiligen Verwaltungen beauftragt, gemeinsam mit den Energieversorgern der Region ein Starthilfekonzept Elektromobilität zu entwickeln. In Folge dieses Beschlusses konstituierte sich Ende 2011 ein Arbeitskreis, der aus den Verwaltungen des Rhein-Sieg-Kreises und der Stadt Bonn, den Energieversorgern SWB Energie und Wasser, der Rhenag, den Stadtwerken Troisdorf, der Rheinenergie und den RWE besteht. Die inhaltlichen Schwerpunkte, die inzwischen in drei Arbeitskreisen behandelt werden, umfassen den Ausbau der Ladeinfrastruktur, die Öffentlichkeitsarbeit und die Bereitstellung von Strom aus regenerativen Quellen durch den Zubau entsprechender Anlagen in der Region. Während Maßnahmen zur Öffentlichkeitsarbeit und die Bereitstellung Grünen Stroms aus den Arbeitskreisen direkt bearbeitet und bewegt werden, ist dies aufgrund der Komplexität des Themas und der zahlreichen Einflussgrößen beim Ausbau der Ladeinfrastruktur nicht möglich. Daraus entstand die Überlegung einer Kooperation mit der Hochschule Bonn-Rhein-Sieg.

An evolving strategy for a multi-stage placement of charging stations for electrical cars is developed. Both an incremental as well as a decremental placement decomposition are evaluated on this Maximum Covering Location Problem. We show that an incremental Genetic Algorithm benefits from problem decomposition effects of having multiple stages and shows greedy behaviour.

The positive influence of physical activity for people at all life stages is well known. Exercising has a proven therapeutic effect on the cardiovascular system and can counteract the increase of cardiovascular diseases in our aging society. An easy and good measure of the cardiovascular feedback is the heart rate. Being able to model and predict the response of a subject’s heart rate on work load input allows the development of more advanced smart devices and analytic tools. These tools can monitor and control the subject’s activity and thus avoid overstrain which would eliminate the positive effect on the cardiovascular system. Current heart rate models were developed for a specific scenario and evaluated on unique data sets only. Additionally, most of these models were tested in indoor environments, e.g. on treadmills and bicycle ergometers. However, many people prefer to do sports in outdoors environments and use their smart phone to record their training data. In this paper, we present an evaluation of existing heart rate models and compare their prediction performance for indoor as well as for outdoor running exercises. For this purpose, we investigate analytical models as well as machine learning approaches in two training sets: one indoor exercise set recorded on a treadmill and one outdoor exercise set recorded by a smart phone.

With the increasing average age of the population in many developed countries, afflictions like cardiovascular diseases have also increased. Exercising has a proven therapeutic effect on the cardiovascular system and can counteract this development. To avoid overstrain, determining an optimal training dose is crucial. In previous research, heart rate has been shown to be a good measure for cardiovascular behavior. Hence, prediction of the heart rate from work load information is an essential part in models used for training control. Most heart-rate-based models are described in the context of specific scenarios, and have been evaluated on unique datasets only. In this paper, we conduct a joint evaluation of existing approaches to model the cardiovascular system under a certain strain, and compare their predictive performance. For this purpose, we investigated some analytical models as well as some machine learning approaches in two scenarios: prediction over a certain time horizon into the future, and estimation of the relation between work load and heart rate over a whole training session.

Training models have been proposed to model the effect of physical strain on fitness. In this work we explore their use not only for analysis but also to generate training plans to achieve a given fitness goal. These plans have to include side constraints such as, e.g., maximal training loads. Therefore plan generation can be treated as a constraint satisfaction problem and thus can be solved by classical CSP solvers. We show that evolutionary algorithms such as differential evolution or CMA-ES produce comparable results while allowing for more flexibility and requiring less computational resources. Due to this flexibility, it is possible to include well known principles of training science during plan generation, resulting in reasonable training plans.

Evolutionary computation and genetic algorithms (GAs) in particular have been applied very successfully to many real world application problems. However, the success or failure of applying Genetic Algorithms is highly dependent on how a problem is represented. Additionally, the number of free parameters makes applying these methods a science of its own, presenting a huge barrier to entry for beginners. This tutorial will give a summary on various representational aspects, discuss parametrization and their influence on the dynamics of GAs.

An evolved neural network controller is presented to solve the optimal control problem for energy optimal driving. A controller is produced which computes equivalent control commands to traditional graph searching approaches, while able to adapt to varied constraints and conditions. Furthermore, after training, trivial amounts of computation time and memory are required, making the approach applicable for embedded systems and path planning applications.

An evolutionary algorithm is presented to solve the optimal control problem for energy optimal driving. Results show that the algorithm computes equivalent strategies as traditional graph searching approaches like dynamic programming or A*. The algorithm proves to be time efficient while saving multiple orders of magnitude in memory compared to graph searching techniques. Thereby making it applicable in embedded applications such as eco-driving assistants or intelligent route planning.

This paper describes the development of a Pedelec controller whose performance level (PL) conforms to European standard on safety of machinery [9] and whose soft- ware is verified to conform to EPAC standard [6] by means of a software verification technique called model checking. In compliance with the standard [9] the hardware needs to implement the required properties corresponding to categories “C” and “D”. The latter is used if the breaks are not able to bring the velomobile with a broken motor controller to a full stop. Therefore the controller needs to implement a test unit, which verifies the functionality of the components and, in case of an emergency, shuts the whole hardware down to prevent injuries of the cyclist. The MTTFd can be measured through a failure graph, which is the result of a FMEA analysis, and can be used to proof that the Pedelec controller meets the regulations of the system specification. The analysis of the system in compliance with [9] usually treats the software as a black box thus ignoring its inner workings and validating its correctness by means of testing. In this paper we present a temporal logic specification according to [6], based on which the software for the Pedelec controller is implemented, and verify instead of only testing its functionality. By means of model checking [1] we proof that the software fulfills all requirements which are regulated by its specification.

Microcontroller-based sensor systems offer great opportunities for the implementation of safety features for potentially dangerous machinery. However, in general they are difficult to assess with regard to their reliability and failure rate. This paper describes the safety assessment of hardware and software of a new and innovative sensor system. The hardware is assessed by standardized methods according to norm EN ISO 13849-1, while the use of model checking is presented as an approach to solve the problem of validating the software.

Theoretische Informatik
(2002)

Eine anschauliche Einführung in die klassischen Themenbereiche der Theoretischen Informatik für Studierende der Informatik im Haupt- und Nebenfach. Die Autoren wählen einen Ansatz, der durch zahlreiche ausgearbeitete Beispiele auch LeserInnen mit nur elementaren Mathematikkenntnissen den Zugang zu Berechenbarkeit, Komplexitätstheorie und formalen Sprachen ermöglicht. Die mathematischen Konzepte werden sowohl formal eingeführt als auch informell erläutert und durch grafische Darstellungen veranschaulicht. Das Buch umfasst den Lehrstoff einführender Vorlesungen in die Theoretische Informatik und bietet zahlreiche Übungsaufgaben zu jedem Kapitel an.

We present a model checking algorithm for ∀CTL (and full CTL) which uses an iterative abstraction refinement strategy.
It terminates at least for all transition systems M that have a finite simulation or bisimulation quotient. In contrast to other abstraction refinement algorithms, we always work with abstract models whose sizes depend only on the length of the formula θ (but not on the size of the system, which might be infinite).