Refine
H-BRS Bibliography
- yes (23)
Departments, institutes and facilities
Document Type
- Conference Object (14)
- Report (3)
- Article (2)
- Preprint (2)
- Part of a Book (1)
- Doctoral Thesis (1)
Keywords
- Quality diversity (4)
- Autoencoder (2)
- Bayesian optimization (2)
- Evolutionary Computation (2)
- Evolutionary computation (2)
- Generative Models (2)
- AI usage in sports (1)
- Artificial Intelligence (1)
- Clustering (1)
- Co-creative processes (1)
- Computational Fluid Dynamics (1)
- Computational creativity (1)
- Computational fluid dynamics (1)
- Dimensionality reduction (1)
- Divergent optimization (1)
- Domestic robotics (1)
- Electric mobility (1)
- Evolutionary optimization (1)
- Feature Model (1)
- Fusion (1)
- Genetic algorithm (1)
- Hochleistungssport (1)
- Human-Computer Interaction (1)
- Informationsgewinnung (1)
- Informationsverarbeitung (1)
- Künstliche Intelligenz (1)
- Lattice Boltzmann Method (1)
- Leistungsdiagnostik (1)
- Leistungssport (1)
- Maximal covering location problem (1)
- Methodik (1)
- Modalities (1)
- Multi-Solution Optimization (1)
- Multi-objective (1)
- Multi-objective optimization (1)
- Multi-stage (1)
- Multimodal (1)
- Multimodal optimization (1)
- Object recognition (1)
- Optimization (1)
- Phenotypic niching (1)
- Quality Diversity (1)
- SMPA loop (1)
- Single-objective (1)
- Spielanalyse (1)
- Surrogate models (1)
- Surrogate-assistance (1)
- Synergetik (1)
- Trainingssteuerung (1)
- Transparency (1)
- Variational Autoencoder (1)
- Wettkampfanalyse (1)
- activation function (1)
- bagging (1)
- bloat (1)
- designing air flow (1)
- dimensionality reduction (1)
- diversity (1)
- elite sports (1)
- evolutionary illumination (1)
- explainable AI (1)
- feature discovery (1)
- genetic neutrality (1)
- heterogeneous networks (1)
- ideation (1)
- multi-objective optimization (1)
- multimodal optimization (1)
- neuroevolution (1)
- phenotypic diversity (1)
- phenotypic feature (1)
- phenotypic niching (1)
- prototype theory (1)
- quality-diversity (1)
- regression (1)
- surrogate assisted phenotypic niching (1)
- surrogate modeling (1)
- surrogate models (1)
- wind nuisance threshold (1)
Aufgrund eines nahezu gleichlautenden Beschlusses des Kreistages im Rhein-Sieg-Kreis (RSK) und des Hauptausschusses der Stadt Bonn im Jahr 2011 wurden die jeweiligen Verwaltungen beauftragt, gemeinsam mit den Energieversorgern der Region ein Starthilfekonzept Elektromobilität zu entwickeln. In Folge dieses Beschlusses konstituierte sich Ende 2011 ein Arbeitskreis, der aus den Verwaltungen des Rhein-Sieg-Kreises und der Stadt Bonn, den Energieversorgern SWB Energie und Wasser, der Rhenag, den Stadtwerken Troisdorf, der Rheinenergie und den RWE besteht. Die inhaltlichen Schwerpunkte, die inzwischen in drei Arbeitskreisen behandelt werden, umfassen den Ausbau der Ladeinfrastruktur, die Öffentlichkeitsarbeit und die Bereitstellung von Strom aus regenerativen Quellen durch den Zubau entsprechender Anlagen in der Region. Während Maßnahmen zur Öffentlichkeitsarbeit und die Bereitstellung Grünen Stroms aus den Arbeitskreisen direkt bearbeitet und bewegt werden, ist dies aufgrund der Komplexität des Themas und der zahlreichen Einflussgrößen beim Ausbau der Ladeinfrastruktur nicht möglich. Daraus entstand die Überlegung einer Kooperation mit der Hochschule Bonn-Rhein-Sieg.
Evolutionary illumination is a recent technique that allows producing many diverse, optimal solutions in a map of manually defined features. To support the large amount of objective function evaluations, surrogate model assistance was recently introduced. Illumination models need to represent many more, diverse optimal regions than classical surrogate models. In this PhD thesis, we propose to decompose the sample set, decreasing model complexity, by hierarchically segmenting the training set according to their coordinates in feature space. An ensemble of diverse models can then be trained to serve as a surrogate to illumination.
Neuroevolution methods evolve the weights of a neural network, and in some cases the topology, but little work has been done to analyze the effect of evolving the activation functions of individual nodes on network size, an important factor when training networks with a small number of samples. In this work we extend the neuroevolution algorithm NEAT to evolve the activation function of neurons in addition to the topology and weights of the network. The size and performance of networks produced using NEAT with uniform activation in all nodes, or homogenous networks, is compared to networks which contain a mixture of activation functions, or heterogenous networks. For a number of regression and classification benchmarks it is shown that, (1) qualitatively different activation functions lead to different results in homogeneous networks, (2) the heterogeneous version of NEAT is able to select well performing activation functions, (3) the produced heterogeneous networks are significantly smaller than homogeneous networks.
The initial phase in real world engineering optimization and design is a process of discovery in which not all requirements can be made in advance, or are hard to formalize. Quality diversity algorithms, which produce a variety of high performing solutions, provide a unique chance to support engineers and designers in the search for what is possible and high performing. In this work we begin to answer the question how a user can interact with quality diversity and turn it into an interactive innovation aid. By modeling a user's selection it can be determined whether the optimization is drifting away from the user's preferences. The optimization is then constrained by adding a penalty to the objective function. We present an interactive quality diversity algorithm that can take into account the user's selection. The approach is evaluated in a new multimodal optimization benchmark that allows various optimization tasks to be performed. The user selection drift of the approach is compared to a state of the art alternative on both a planning and a neuroevolution control task, thereby showing its limits and possibilities.
Surrogate models are used to reduce the burden of expensive-to-evaluate objective functions in optimization. By creating models which map genomes to objective values, these models can estimate the performance of unknown inputs, and so be used in place of expensive objective functions. Evolutionary techniques such as genetic programming or neuroevolution commonly alter the structure of the genome itself. A lack of consistency in the genotype is a fatal blow to data-driven modeling techniques: interpolation between points is impossible without a common input space. However, while the dimensionality of genotypes may differ across individuals, in many domains, such as controllers or classifiers, the dimensionality of the input and output remains constant. In this work we leverage this insight to embed differing neural networks into the same input space. To judge the difference between the behavior of two neural networks, we give them both the same input sequence, and examine the difference in output. This difference, the phenotypic distance, can then be used to situate these networks into a common input space, allowing us to produce surrogate models which can predict the performance of neural networks regardless of topology. In a robotic navigation task, we show that models trained using this phenotypic embedding perform as well or better as those trained on the weight values of a fixed topology neural network. We establish such phenotypic surrogate models as a promising and flexible approach which enables surrogate modeling even for representations that undergo structural changes.
AErOmAt Abschlussbericht
(2020)
Das Projekt AErOmAt hatte zum Ziel, neue Methoden zu entwickeln, um einen erheblichen Teil aerodynamischer Simulationen bei rechenaufwändigen Optimierungsdomänen einzusparen. Die Hochschule Bonn-Rhein-Sieg (H-BRS) hat auf diesem Weg einen gesellschaftlich relevanten und gleichzeitig wirtschaftlich verwertbaren Beitrag zur Energieeffizienzforschung geleistet. Das Projekt führte außerdem zu einer schnelleren Integration der neuberufenen Antragsteller in die vorhandenen Forschungsstrukturen.
In optimization methods that return diverse solution sets, three interpretations of diversity can be distinguished: multi-objective optimization which searches diversity in objective space, multimodal optimization which tries spreading out the solutions in genetic space, and quality diversity which performs diversity maintenance in phenotypic space. We introduce niching methods that provide more flexibility to the analysis of diversity and a simple domain to compare and provide insights about the paradigms. We show that multiobjective optimization does not always produce much diversity, quality diversity is not sensitive to genetic neutrality and creates the most diverse set of solutions, and multimodal optimization produces higher fitness solutions. An autoencoder is used to discover phenotypic features automatically, producing an even more diverse solution set. Finally, we make recommendations about when to use which approach.
Computers can help us to trigger our intuition about how to solve a problem. But how does a computer take into account what a user wants and update these triggers? User preferences are hard to model as they are by nature vague, depend on the user’s background and are not always deterministic, changing depending on the context and process under which they were established. We pose that the process of preference discovery should be the object of interest in computer aided design or ideation. The process should be transparent, informative, interactive and intuitive. We formulate Hyper-Pref, a cyclic co-creative process between human and computer, which triggers the user’s intuition about what is possible and is updated according to what the user wants based on their decisions. We combine quality diversity algorithms, a divergent optimization method that can produce many, diverse solutions, with variational autoencoders to both model that diversity as well as the user’s preferences, discovering the preference hypervolume within large search spaces.
In complex, expensive optimization domains we often narrowly focus on finding high performing solutions, instead of expanding our understanding of the domain itself. But what if we could quickly understand the complex behaviors that can emerge in said domains instead? We introduce surrogate-assisted phenotypic niching, a quality diversity algorithm which allows to discover a large, diverse set of behaviors by using computationally expensive phenotypic features. In this work we discover the types of air flow in a 2D fluid dynamics optimization problem. A fast GPU-based fluid dynamics solver is used in conjunction with surrogate models to accurately predict fluid characteristics from the shapes that produce the air flow. We show that these features can be modeled in a data-driven way while sampling to improve performance, rather than explicitly sampling to improve feature models. Our method can reduce the need to run an infeasibly large set of simulations while still being able to design a large diversity of air flows and the shapes that cause them. Discovering diversity of behaviors helps engineers to better understand expensive domains and their solutions.
In this thesis it is posed that the central object of preference discovery is a co-creative process in which the Other can be represented by a machine. It explores efficient methods to enhance introverted intuition using extraverted intuition's communication lines. Possible implementations of such processes are presented using novel algorithms that perform divergent search to feed the users' intuition with many examples of high quality solutions, allowing them to take influence interactively. The machine feeds and reflects upon human intuition, combining both what is possible and preferred. The machine model and the divergent optimization algorithms are the motor behind this co-creative process, in which machine and users co-create and interactively choose branches of an ad hoc hierarchical decomposition of the solution space.
The proposed co-creative process consists of several elements: a formal model for interactive co-creative processes, evolutionary divergent search, diversity and similarity, data-driven methods to discover diversity, limitations of artificial creative agents, matters of efficiency in behavioral and morphological modeling, visualization, a connection to prototype theory, and methods to allow users to influence artificial creative agents. This thesis helps putting the human back into the design loop in generative AI and optimization.
Künstliche Intelligenz (KI) ist aus der heutigen Gesellschaft kaum noch wegzudenken. Auch im Sport haben Methoden der KI in den letzten Jahren mehr und mehr Einzug gehalten. Ob und inwieweit dabei allerdings die derzeitigen Potenziale der KI tatsächlich ausgeschöpft werden, ist bislang nicht untersucht worden. Der Nutzen von Methoden der KI im Sport ist unbestritten, jedoch treten bei der Umsetzung in die Praxis gravierende Probleme auf, was den Zugang zu Ressourcen, die Verfügbarkeit von Experten und den Umgang mit den Methoden und Daten betrifft. Die Ursache für die, verglichen mit anderen Anwendungsgebieten, langsame An- bzw. Übernahme von Methoden der KI in den Spitzensport ist nach Hypothese des Autorenteams auf mehrere Mismatches zwischen dem Anwendungsfeld und den KI-Methoden zurückzuführen. Diese Mismatches sind methodischer, struktureller und auch kommunikativer Art. In der vorliegenden Expertise werden Vorschläge abgeleitet, die zur Auflösung der Mismatches führen können und zugleich neue Transfer- und Synergiemöglichkeiten aufzeigen. Außerdem wurden drei Use Cases zu Trainingssteuerung, Leistungsdiagnostik und Wettkampfdiagnostik exemplarisch umgesetzt. Dies erfolgte in Form entsprechender Projektbeschreibungen. Dabei zeigt die Ausarbeitung, auf welche Art und Weise Probleme, die heute noch bei der Verbindung zwischen KI und Sport bestehen, möglichst ausgeräumt werden können. Eine empirische Umsetzung des Use Case Trainingssteuerung erfolgte im Radsport, weshalb dieser ausführlicher dargestellt wird.