Refine
H-BRS Bibliography
- yes (15)
Departments, institutes and facilities
Document Type
- Conference Object (11)
- Article (3)
- Doctoral Thesis (1)
Year of publication
Language
- English (15)
Has Fulltext
- no (15)
Keywords
- Augmented Reality (3)
- Virtual Reality (3)
- guidance (3)
- 3D user interface (2)
- 3D user interfaces (2)
- Awe (2)
- multisensory cues (2)
- 3D User Interface (1)
- Challenges (1)
- Emotion (1)
When navigating larger virtual environments and computer games, natural walking is often unfeasible. Here, we investigate how alternatives such as joystick- or leaning-based locomotion interfaces ("human joystick") can be enhanced by adding walking-related cues following a sensory substitution approach. Using a custom-designed foot haptics system and evaluating it in a multi-part study, we show that adding walking related auditory cues (footstep sounds), visual cues (simulating bobbing head-motions from walking), and vibrotactile cues (via vibrotactile transducers and bass-shakers under participants' feet) could all enhance participants' sensation of self-motion (vection) and involement/presence. These benefits occurred similarly for seated joystick and standing leaning locomotion. Footstep sounds and vibrotactile cues also enhanced participants' self-reported ability to judge self-motion velocities and distances traveled. Compared to seated joystick control, standing leaning enhanced self-motion sensations. Combining standing leaning with a minimal walking-in-place procedure showed no benefits and reduced usability, though. Together, results highlight the potential of incorporating walking-related auditory, visual, and vibrotactile cues for improving user experience and self-motion perception in applications such as virtual reality, gaming, and tele-presence.
We present a novel forearm-and-glove tactile interface that can enhance 3D interaction by guiding hand motor planning and coordination. In particular, we aim to improve hand motion and pose actions related to selection and manipulation tasks. Through our user studies, we illustrate how tactile patterns can guide the user, by triggering hand pose and motion changes, for example to grasp (select) and manipulate (move) an object. We discuss the potential and limitations of the interface, and outline future work.
This research investigates the efficacy of multisensory cues for locating targets in Augmented Reality (AR). Sensory constraints can impair perception and attention in AR, leading to reduced performance due to factors such as conflicting visual cues or a restricted field of view. To address these limitations, the research proposes head-based multisensory guidance methods that leverage audio-tactile cues to direct users' attention towards target locations. The research findings demonstrate that this approach can effectively reduce the influence of sensory constraints, resulting in improved search performance in AR. Additionally, the thesis discusses the limitations of the proposed methods and provides recommendations for future research.
Selection Performance and Reliability of Eye and Head Gaze Tracking Under Varying Light Conditions
(2024)
In presence of conflicting or ambiguous visual cues in complex scenes, performing 3D selection and manipulation tasks can be challenging. To improve motor planning and coordination, we explore audio-tactile cues to inform the user about the presence of objects in hand proximity, e.g., to avoid unwanted object penetrations. We do so through a novel glove-based tactile interface, enhanced by audio cues. Through two user studies, we illustrate that proximity guidance cues improve spatial awareness, hand motions, and collision avoidance behaviors, and show how proximity cues in combination with collision and friction cues can significantly improve performance.