Refine
Departments, institutes and facilities
Document Type
- Article (2)
- Contribution to a Periodical (1)
Keywords
- Ionic liquids (1)
- fluorinated salts (1)
- heterocyclic (1)
- liquid crystals (1)
- mesogens (1)
Dihydropyrimidine dehydrogenase (DPD) deficiency is an infrequently described autosomal recessive disorder of the pyrimidine degradation pathway and can lead to mental and motor retardation and convulsions. DPD deficiency is also known to cause a potentially lethal toxicity following administration of the antineoplastic agent 5-fluorouracil. In an ongoing study of 72 DPD deficient patients, we analysed the molecular background of 5 patients in more detail in whom initial sequence analysis did not reveal pathogenic mutations. In three patients, a 13.8 kb deletion of exon 12 was found and in one patient a 122 kb deletion of exon 14–16 of DPYD. In the fifth patient, a c.299_302delTCAT mutation in exon 4 was found and also loss of heterozygosity of the entire DPD gene. Further analysis demonstrated a de novo deletion of approximately 14 Mb of chromosome 1p13.3–1p21.3, which includes DPYD. Haploinsufficiency of NTNG1, LPPR4, GPSM2, COL11A1 and VAV3 might have contributed to the severe psychomotor retardation and unusual craniofacial features in this patient. Our study showed for the first time the presence of genomic deletions affecting DPYD in 7% (5/72) of all DPD deficient patients. Therefore, screening of DPD deficient patients for genomic deletions should be considered.
The synthesis and characterization of a new class of 1,2,4-oxadiazolylpyridinium as a cationic scaffold for fluorinated ionic liquid crystals is herein described. A series of 12 fluorinated heterocyclic salts based on a 1,2,4-oxadiazole moiety, connected through its C(5) or C(3) to an N-alkylpyridinium unit and a perfluoroheptyl chain, differing in the length of the alkyl chain and counterions, has been synthesized. As counterions iodide, bromide and bis(trifluoromethane)sulfonimide have been considered. The synthesis, structure, and liquid crystalline properties of these compounds are discussed on the basis of the tuned structural variables. The thermotropic properties of this series of salts have been investigated by differential scanning calorimetry and polarized optical microscopy. The results showed the existence of an enantiotropic mesomorphic smectic liquid crystalline phase for six bis(trifluoromethane)sulfonimide salts.