Refine
H-BRS Bibliography
- yes (8)
Departments, institutes and facilities
Document Type
- Conference Object (3)
- Article (2)
- Preprint (2)
- Working Paper (1)
Language
- English (8)
Has Fulltext
- no (8)
Keywords
- ARIMA (2)
- confidence level (2)
- data filtering (2)
- neural network (2)
- short-term load forecasting (2)
- Agent-Based Modeling (1)
- Air Pollution Monitoring (1)
- Artificial Intelligence (cs.AI) (1)
- Attention (1)
- CNN (1)
Vietnam requires a sustainable urbanization, for which city sensing is used in planning and de-cision-making. Large cities need portable, scalable, and inexpensive digital technology for this purpose. End-to-end air quality monitoring companies such as AirVisual and Plume Air have shown their reliability with portable devices outfitted with superior air sensors. They are pricey, yet homeowners use them to get local air data without evaluating the causal effect. Our air quality inspection system is scalable, reasonably priced, and flexible. Minicomputer of the sys-tem remotely monitors PMS7003 and BME280 sensor data through a microcontroller processor. The 5-megapixel camera module enables researchers to infer the causal relationship between traffic intensity and dust concentration. The design enables inexpensive, commercial-grade hardware, with Azure Blob storing air pollution data and surrounding-area imagery and pre-venting the system from physically expanding. In addition, by including an air channel that re-plenishes and distributes temperature, the design improves ventilation and safeguards electrical components. The gadget allows for the analysis of the correlation between traffic and air quali-ty data, which might aid in the establishment of sustainable urban development plans and poli-cies.
TSEM: Temporally-Weighted Spatiotemporal Explainable Neural Network for Multivariate Time Series
(2023)
Although climate-induced liquidity risks can cause significant disruptions and instabilities in the financial sector, they are frequently overlooked in current debates and policy discussions. This paper proposes a macro-financial agent-based integrated assessment model to investigate the transmission channels of climate risks to financial instability and study the emergence of liquidity crises through interbank market dynamics. Our simulations show that the financial system could experience serious funding and market liquidity shortages due to climate-induced liquidity crises. Our investigation contributes to our understanding of the impact - and possible solutions - to climate-induced liquidity crises, besides the issue of asset stranding related to transition risks usually considered in the existing studies.
TSEM: Temporally Weighted Spatiotemporal Explainable Neural Network for Multivariate Time Series
(2022)
Deep learning has become a one-size-fits-all solution for technical and business domains thanks to its flexibility and adaptability. It is implemented using opaque models, which unfortunately undermines the outcome trustworthiness. In order to have a better understanding of the behavior of a system, particularly one driven by time series, a look inside a deep learning model so-called posthoc eXplainable Artificial Intelligence (XAI) approaches, is important. There are two major types of XAI for time series data, namely model-agnostic and model-specific. Model-specific approach is considered in this work. While other approaches employ either Class Activation Mapping (CAM) or Attention Mechanism, we merge the two strategies into a single system, simply called the Temporally Weighted Spatiotemporal Explainable Neural Network for Multivariate Time Series (TSEM). TSEM combines the capabilities of RNN and CNN models in such a way that RNN hidden units are employed as attention weights for the CNN feature maps temporal axis. The result shows that TSEM outperforms XCM. It is similar to STAM in terms of accuracy, while also satisfying a number of interpretability criteria, including causality, fidelity, and spatiotemporality.