Refine
H-BRS Bibliography
- yes (18)
Departments, institutes and facilities
Document Type
- Conference Object (8)
- Research Data (4)
- Article (3)
- Preprint (1)
- Report (1)
- Working Paper (1)
Keywords
- AOD (2)
- COD (2)
- Distribution grid management (2)
- Energiemeteorologie (2)
- Erzeugungsprognose (2)
- Inversion (2)
- Photovoltaik (2)
- Reflektanz (2)
- Satellitenprodukte (2)
- Si reference cells (2)
Incoming solar radiation is an important driver of our climate and weather. Several studies (see for instance Frank et al. 2018) have revealed discrepancies between ground-based irradiance measurements and the predictions of regional weather models. In the realm of electricity generation, accurate forecasts of solar photovoltaic (PV)energy yield are becoming indispensable for cost-effective grid operation: in Germany there are 1.6 million PVsystems installed, with a nominal power of 46 GW (Bundesverband Solarwirtschaft 2019). The proliferation of PV systems provides a unique opportunity to characterise global irradiance with unprecedented spatiotemporalresolution, which in turn will allow for highly resolved PV power forecasts.
The temperature of photovoltaic modules is modelled as a dynamic function of ambient temperature, shortwave and longwave irradiance and wind speed, in order to allow for a more accurate characterisation of their efficiency. A simple dynamic thermal model is developed by extending an existing parametric steady-state model using an exponential smoothing kernel to include the effect of the heat capacity of the system. The four parameters of the model are fitted to measured data from three photovoltaic systems in the Allgäu region in Germany using non-linear optimisation. The dynamic model reduces the root-mean-square error between measured and modelled module temperature to 1.58 K on average, compared to 3.03 K for the steady-state model, whereas the maximum instantaneous error is reduced from 20.02 to 6.58 K.
Photovoltaic (PV) power data are a valuable but as yet under-utilised resource that could be used to characterise global irradiance with unprecedented spatio-temporal resolution. The resulting knowledge of atmospheric conditions can then be fed back into weather models and will ultimately serve to improve forecasts of PV power itself. This provides a data-driven alternative to statistical methods that use post-processing to overcome inconsistencies between ground-based irradiance measurements and the corresponding predictions of regional weather models (see for instance Frank et al., 2018). This work reports first results from an algorithm developed to infer global horizontal irradiance as well as atmospheric optical properties such as aerosol or cloud optical depth from PV power measurements.
The rapid increase in solar photovoltaic (PV) installations worldwide has resulted in the electricity grid becoming increasingly dependent on atmospheric conditions, thus requiring more accurate forecasts of incoming solar irradiance. In this context, measured data from PV systems are a valuable source of information about the optical properties of the atmosphere, in particular the cloud optical depth (COD). This work reports first results from an inversion algorithm developed to infer global, direct and diffuse irradiance as well as atmospheric optical properties from PV power measurements, with the goal of assimilating this information into numerical weather prediction (NWP) models.
West Africa has a great potential for the application of solar energy systems, as it combines high levels of solar irradiance with a lack of energy production. Southern West Africa is a region with a very high aerosol load. Urbanization, uncontrolled fires, traffic as well as power plants and oil rigs lead to increasing anthropogenic emissions. The naturally circulating north winds bring mineral dust from the Sahel and Sahara and monsoons - sea salt and other oceanic compounds from the south. The EU-funded Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project (2014–2018), dlivered the most complete dataset of the atmosphere over the region to date. In our study, we use in-situ measured optical properties of aerosols from the airborne campaign over the Gulf of Guinea and inland, and from ground measurements in coastal cities.
This dataset contains data from two measurement campaigns in autumn 2018 and summer 2019 that were part of the BMWi project "MetPVNet", and serve as a supplement to the paper "Dynamic model of photovoltaic module temperature as a function of atmospheric conditions", published in the special edition of "Advances in Science and Research", the proceedings of the 19th EMS Annual Meeting: European Conference for Applied Meteorology and Climatology 2019.
Data are resampled to one minute, and include:
PV module temperature
Ambient temperature
Plane-of-array irradiance
Windspeed
Atmospheric thermal emission
The data were used for the dynamic temperature model, as presented in the paper
Due to the policy goals for sustainable energy production, renewable energy plants such as photovoltaics are increasingly in use. The energy production from solar radiation depends strongly on atmospheric conditions. As the weather mostly changes, electrical power generation fluctuates, making technical planning and control of power grids to a complex problem.
Background & Objective: Due to the policy goals for sustainable energy production, renewable energy plants such as photovoltaics are increasingly in use. The energy production from solar radiation depends strongly on atmospheric conditions. As the weather mostly changes, electrical power generation fluctuates, making technical planning and control of power grids to a complex problem. Due to used materials (semiconductors e.g. silicon, gallium arsenide, cadmium telluride) the photovoltaic cells are spectrally selective. It means that only radiation of certain wavelengths converts into electrical energy. A material property called spectral response characterizes a certain degree of conversion of solar radiation into the electric current for each wavelength of solar light.
Anhand detaillierter Netzanalysen für ein reales Mittelspannungsnetzgebiet konnte gezeigt werden, dass sowohl die Einbindung von Prognosedaten auf Basis von Satelliten und Wetterdaten, als auch die Verbesserung von Folgetagsprognosen auf der Basis numerischer Wettermodelle einen deutlichen Mehrwert für ein prognosebasiertes Engpassmanagement bzw. Redispatch und Blindleistungsmanagement im Verteilnetz aufweisen. Auch Kurzfristprognosen auf der Basis von Satellitendaten haben einen positiven Effekt. Ein weiterer wichtiger Mehrwert des Projektes ist auch die Rückmeldung der kritischen Prognosesituationen aus Sicht der Anwendungsfälle, so dass wie bereits im Projekt gezeigt und darüber hinaus, Prognosen zielgerichteter auf die Anwendung im Verteilnetzbetrieb ausgelegt und optimiert werden können.
Weiterhin konnten Prognoseverbesserungen für das Vorhersagemodell des Deutschen Wetterdienstes durch die Assimilation von sichtbaren Satellitenbildern erreicht werden. Darüber hinaus wurden Wolken- und Strahlungsprodukte aus Satelliten verbessert und somit die Datenbasis für die Kurzfristprognose als auch für die Assimilation.
Darüber hinaus wurden verschiedene Methoden entwickelt, die zukünftig zu einer weiteren Prognoseverbesserung, insbesondere für Wettersituationen mit hohen Prognosefehlern, führen könnten. Solche Situationen wurden aus Sicht des Netzbetriebs und mithilfe von satellitenbasierten Analysen der Gesamtwetterlage für die Perioden der MetPVNet Messkampagnen identifiziert. Hierbei handelte es sich insbesondere um Situationen mit starker oder stark wechselhafter Bewölkung.
Für die MetPVNet Messkampagnen wurde auf der Basis eines Trainingsdatensatzes und in Abhängigkeit der Variabilitätsklasse die Abweichung der bodennahen Einstrahlung von Satellitendaten oder von Strahlungsprognosen quantifiziert. Diese Art der Informationen bietet zukünftig die Möglichkeit zur Bewertung der Prognosegüte.
In contrast to the German power supply, the energy supply in many West African countries is very unstable. Frequent power outages are not uncommon. Especially for critical infrastructures, such as hospitals, a stable power supply is vital. To compensate for the power outages, diesel generators are often used. In the future, these systems will increasingly be supplemented by PV systems and storage, so that the generator will have to be used less or not at all when needed. For the design and operation of such systems, it is necessary to better understand the atmospheric variability of PV power generation. For example, there are large variations between rainy and dry seasons, between days with high and low dust levels - caused by sandstorms (harmattan) or urban air pollution.
Solar photovoltaic power output is modulated by atmospheric aerosols and clouds and thus contains valuable information on the optical properties of the atmosphere. As a ground-based data source with high spatiotemporal resolution it has great potential to complement other ground-based solar irradiance measurements as well as those of weather models and satellites, thus leading to an improved characterisation of global horizontal irradiance. In this work several algorithms are presented that can retrieve global tilted and horizontal irradiance and atmospheric optical properties from solar photovoltaic data and/or pyranometer measurements. The method is tested on data from two measurement campaigns that took place in the Allgäu region in Germany in autumn 2018 and summer 2019, and the results are compared with local pyranometer measurements as well as satellite and weather model data. Using power data measured at 1 Hz and averaged to 1 min resolution along with a non-linear photovoltaic module temperature model, global horizontal irradiance is extracted with a mean bias error compared to concurrent pyranometer measurements of 5.79 W m−2 (7.35 W m−2) under clear (cloudy) skies, averaged over the two campaigns, whereas for the retrieval using coarser 15 min power data with a linear temperature model the mean bias error is 5.88 and 41.87 W m−2 under clear and cloudy skies, respectively.
During completely overcast periods the cloud optical depth is extracted from photovoltaic power using a lookup table method based on a 1D radiative transfer simulation, and the results are compared to both satellite retrievals and data from the Consortium for Small-scale Modelling (COSMO) weather model. Potential applications of this approach for extracting cloud optical properties are discussed, as well as certain limitations, such as the representation of 3D radiative effects that occur under broken-cloud conditions. In principle this method could provide an unprecedented amount of ground-based data on both irradiance and optical properties of the atmosphere, as long as the required photovoltaic power data are available and properly pre-screened to remove unwanted artefacts in the signal. Possible solutions to this problem are discussed in the context of future work.
In the research project "MetPVNet", both, the forecast-based operation management in distribution grids and as well as the forecasts of the feed-in of PV-power from decentralized plants could be improved on the basis of satellite data and numerical weather forecasts. Based on a detailed network analyses for a real medium-voltage grid area, it was shown that both – the integration of forecast data based on satellite and weather data and the improvement of subsequent day forecasts based on numerical weather models – have a significant added value for forecast-based congestion management or redispatch and reactive power management in the distribution grid. Furthermore, forecast improvements for the forecast model of the German Weather Service were achieved by assimilating visible satellite imagery, and cloud and radiation products from satellites were improved, thus improving the database for short-term forecasting as well as for assimilation. In addition, several methods have been developed that will enable forecast improvement in the future, especially for weather situations with high cloud induced variability and high forecast errors. This article summarizes the most important project results.
In view of the rapid growth of solar power installations worldwide, accurate forecasts of photovoltaic (PV) power generation are becoming increasingly indispensable for the overall stability of the electricity grid. In the context of household energy storage systems, PV power forecasts contribute towards intelligent energy management and control of PV-battery systems, in particular so that self-sufficiency and battery lifetime are maximised. Typical battery control algorithms require day-ahead forecasts of PV power generation, and in most cases a combination of statistical methods and numerical weather prediction (NWP) models are employed. The latter are however often inaccurate, both due to deficiencies in model physics as well as an insufficient description of irradiance variability.
Solar photovoltaic power output is modulated by atmospheric aerosols and clouds and thus contains valuable information on the optical properties of the atmosphere. As a ground-based data source with high spatiotemporal resolution it has great potential to complement other ground-based solar irradiance measurements as well as those of weather models and satellites, thus leading to an improved characterisation of global horizontal irradiance. In this work several algorithms are presented that can retrieve global tilted and horizontal irradiance and atmospheric optical properties from solar photovoltaic data and/or pyranometer measurements. Specifically, the aerosol (cloud) optical depth is inferred during clear sky (completely overcast) conditions. The method is tested on data from two measurement campaigns that took place in Allgäu, Germany in autumn 2018 and summer 2019, and the results are compared with local pyranometer measurements as well as satellite and weather model data. Using power data measured at 1 Hz and averaged to 1 minute resolution, the hourly global horizontal irradiance is extracted with a mean bias error compared to concurrent pyranometer measurements of 11.45 W m−2, averaged over the two campaigns, whereas for the retrieval using coarser 15 minute power data the mean bias error is 16.39 W m−2.
During completely overcast periods the cloud optical depth is extracted from photovoltaic power using a lookup table method based on a one-dimensional radiative transfer simulation, and the results are compared to both satellite retrievals as well as data from the COSMO weather model. Potential applications of this approach for extracting cloud optical properties are discussed, as well as certain limitations, such as the representation of 3D radiative effects that occur under broken cloud conditions. In principle this method could provide an unprecedented amount of ground-based data on both irradiance and optical properties of the atmosphere, as long as the required photovoltaic power data are available and are properly pre-screened to remove unwanted artefacts in the signal. Possible solutions to this problem are discussed in the context of future work.