Refine
H-BRS Bibliography
- yes (3)
Departments, institutes and facilities
Document Type
Language
- English (3)
Has Fulltext
- no (3)
Keywords
- Benchmarking (1)
- Comparative analysis (1)
- Natural language understanding (1)
- Robot commands (1)
- dependable robots (1)
- remote diagnosis (1)
- robot component monitoring (1)
- robotic black box (1)
Tell Your Robot What To Do: Evaluation of Natural Language Models for Robot Command Processing
(2019)
The use of natural language to indicate robot tasks is a convenient way to command robots. As a result, several models and approaches capable of understanding robot commands have been developed, which however complicates the choice of a suitable model for a given scenario. In this work, we present a comparative analysis and benchmarking of four natural language understanding models - Mbot, Rasa, LU4R, and ECG. We particularly evaluate the performance of the models to understand domestic service robot commands by recognizing the actions and any complementary information in them in three use cases: the RoboCup@Home General Purpose Service Robot (GPSR) category 1 contest, GPSR category 2, and hospital logistics in the context of the ROPOD project.
Robot deployment in realistic environments is challenging despite the fact that robots can be quite skilled at a large number of isolated tasks. One reason for this is that robots are rarely equipped with powerful introspection capabilities, which means that they cannot always deal with failures in an acceptable manner; in addition, manual diagnosis is often a tedious task that requires technicians to have a considerable set of robotics skills. In this paper, we discuss our ongoing efforts to address some of these problems. In particular, we (i) present our early efforts at developing a robotic black box and consider some factors that complicate its design, (ii) explain our component and system monitoring concept, and (iii) describe the necessity for remote monitoring and experimentation as well as our initial attempts at performing those. Our preliminary work opens a range of promising directions for making robots more usable and reliable in practice.
Robot deployment in realistic dynamic environments is a challenging problem despite the fact that robots can be quite skilled at a large number of isolated tasks. One reason for this is that robots are rarely equipped with powerful introspection capabilities, which means that they cannot always deal with failures in a reasonable manner; in addition, manual diagnosis is often a tedious task that requires technicians to have a considerable set of robotics skills.