Refine
H-BRS Bibliography
- yes (3)
Departments, institutes and facilities
Document Type
- Article (3)
Language
- English (3)
Keywords
- Adipogenic effect (1)
- Adipose tissue (1)
- Intact proinsulin (1)
- Lipoaspirates (1)
- Mechanical properties of materials (1)
- Mesenchymal stem cells (1)
- Multi-lineage differentiation (1)
- Polymers (1)
- Regenerative medicine (1)
- Resins (1)
Purpose – To describe the development of a novel polyether(meth)acrylate-based resin material class for stereolithography with alterable material characteristics.
Design/methodology/approach – A complete overview of details to composition parameters, the optimization and bandwidth of mechanical and processing parameters is given. Initial biological characterization experiments and future application felds are depicted. Process parameters are studied in a commercial 3D systems Viper stereolithography system, and a new method to determine these parameters is described herein.
Findings – Initial biological characterizations show the non-toxic behavior in a biological environment, caused mainly by the (meth)acrylate-based core components. These photolithographic resins combine an adjustable low Young’s modulus with the advantages of a non-toxic (meth)acrylate-based process material. In contrast to the mostly rigid process materials used today in the rapid prototyping industry, these polymeric formulations are able to fulfll the extended need for a soft engineering material. A short overview of sample applications is given.
Practical implications – These polymeric formulations are able to meet the growing demand for a resin class for rapid manufacturing that covers a bandwidth from softer to stiffer materials.
Originality/value – This paper gives an overview about the novel developed material class for stereolithography and should be therefore of high interest to people with interest in novel rapid manufacturing materials and technology.
Background and Objectives: In advanced β-cell dysfunction, proinsulin is increasingly replacing insulin as major component of the secretion product. It has been speculated that proinsulin has at least the same adipogenic potency than insulin, leading to an increased tendency of lipid tissue formation in patients with late stage β-cell dysfunction. Methods and Results: Mesenchymal stem cells obtained from liposuction material were grown in differentiation media containing insulin (0.01 μmol), proinsulin (0.01 μmol) or insulin+proinsulin (each 0.005 μmol). Cell culture supernatants were taken from these experiments and an untreated control at weeks 1, 2, and 3, and were stored at -80°C until analysis. Cell differentiation was microscopically supervised and adiponectin concentrations were measured as marker for differentiation into mature lipid cells. This experiment was repeated three times. No growth of lipid cells and no change in adiponectin values was observed in the negative control group (after 7/14/12 days: 3.2±0.5/3.3±0.1/4.4±0.5 ng/ml/12 h). A continuous differentiation into mature adipocytes (also confirmed by Red-Oil-staining) and a corresponding increase in adiponectin values was observed in the experiments with insulin (3.6±1.9/5.1±1.4/13.3±1.5 ng/ml/12 h; p<0.05 week 1 vs. week 3) and proinsulin (3.3±1.2/3.5±0.3/12.2±1.2 ng/ml/12 h; p<0.05). Comparable effects were seen with the insulin/proinsulin combination. Conclusions: Proinsulin has the same adipogenic potential than insulin in vitro. Proinsulin has only 10∼20% of the glucose-lowering effect of insulin. It can be speculated that the adipogenic potential of proinsulin may be a large contributor to the increased body weight problems in patients with type 2 diabetes and advanced β-cell dysfunction.