Refine
H-BRS Bibliography
- yes (11)
Departments, institutes and facilities
Document Type
- Conference Object (6)
- Article (2)
- Working Paper (2)
- Report (1)
Keywords
- AOD (2)
- COD (2)
- Distribution grid management (2)
- Energiemeteorologie (2)
- Erzeugungsprognose (2)
- Inversion (2)
- Photovoltaik (2)
- Reflektanz (2)
- Satellitenprodukte (2)
- Si reference cells (2)
Anhand detaillierter Netzanalysen für ein reales Mittelspannungsnetzgebiet konnte gezeigt werden, dass sowohl die Einbindung von Prognosedaten auf Basis von Satelliten und Wetterdaten, als auch die Verbesserung von Folgetagsprognosen auf der Basis numerischer Wettermodelle einen deutlichen Mehrwert für ein prognosebasiertes Engpassmanagement bzw. Redispatch und Blindleistungsmanagement im Verteilnetz aufweisen. Auch Kurzfristprognosen auf der Basis von Satellitendaten haben einen positiven Effekt. Ein weiterer wichtiger Mehrwert des Projektes ist auch die Rückmeldung der kritischen Prognosesituationen aus Sicht der Anwendungsfälle, so dass wie bereits im Projekt gezeigt und darüber hinaus, Prognosen zielgerichteter auf die Anwendung im Verteilnetzbetrieb ausgelegt und optimiert werden können.
Weiterhin konnten Prognoseverbesserungen für das Vorhersagemodell des Deutschen Wetterdienstes durch die Assimilation von sichtbaren Satellitenbildern erreicht werden. Darüber hinaus wurden Wolken- und Strahlungsprodukte aus Satelliten verbessert und somit die Datenbasis für die Kurzfristprognose als auch für die Assimilation.
Darüber hinaus wurden verschiedene Methoden entwickelt, die zukünftig zu einer weiteren Prognoseverbesserung, insbesondere für Wettersituationen mit hohen Prognosefehlern, führen könnten. Solche Situationen wurden aus Sicht des Netzbetriebs und mithilfe von satellitenbasierten Analysen der Gesamtwetterlage für die Perioden der MetPVNet Messkampagnen identifiziert. Hierbei handelte es sich insbesondere um Situationen mit starker oder stark wechselhafter Bewölkung.
Für die MetPVNet Messkampagnen wurde auf der Basis eines Trainingsdatensatzes und in Abhängigkeit der Variabilitätsklasse die Abweichung der bodennahen Einstrahlung von Satellitendaten oder von Strahlungsprognosen quantifiziert. Diese Art der Informationen bietet zukünftig die Möglichkeit zur Bewertung der Prognosegüte.
Photovoltaic (PV) power data are a valuable but as yet under-utilised resource that could be used to characterise global irradiance with unprecedented spatio-temporal resolution. The resulting knowledge of atmospheric conditions can then be fed back into weather models and will ultimately serve to improve forecasts of PV power itself. This provides a data-driven alternative to statistical methods that use post-processing to overcome inconsistencies between ground-based irradiance measurements and the corresponding predictions of regional weather models (see for instance Frank et al., 2018). This work reports first results from an algorithm developed to infer global horizontal irradiance as well as atmospheric optical properties such as aerosol or cloud optical depth from PV power measurements.
In view of the rapid growth of solar power installations worldwide, accurate forecasts of photovoltaic (PV) power generation are becoming increasingly indispensable for the overall stability of the electricity grid. In the context of household energy storage systems, PV power forecasts contribute towards intelligent energy management and control of PV-battery systems, in particular so that self-sufficiency and battery lifetime are maximised. Typical battery control algorithms require day-ahead forecasts of PV power generation, and in most cases a combination of statistical methods and numerical weather prediction (NWP) models are employed. The latter are however often inaccurate, both due to deficiencies in model physics as well as an insufficient description of irradiance variability.
In the research project "MetPVNet", both, the forecast-based operation management in distribution grids and as well as the forecasts of the feed-in of PV-power from decentralized plants could be improved on the basis of satellite data and numerical weather forecasts. Based on a detailed network analyses for a real medium-voltage grid area, it was shown that both – the integration of forecast data based on satellite and weather data and the improvement of subsequent day forecasts based on numerical weather models – have a significant added value for forecast-based congestion management or redispatch and reactive power management in the distribution grid. Furthermore, forecast improvements for the forecast model of the German Weather Service were achieved by assimilating visible satellite imagery, and cloud and radiation products from satellites were improved, thus improving the database for short-term forecasting as well as for assimilation. In addition, several methods have been developed that will enable forecast improvement in the future, especially for weather situations with high cloud induced variability and high forecast errors. This article summarizes the most important project results.
Incoming solar radiation is an important driver of our climate and weather. Several studies (see for instance Frank et al. 2018) have revealed discrepancies between ground-based irradiance measurements and the predictions of regional weather models. In the realm of electricity generation, accurate forecasts of solar photovoltaic (PV)energy yield are becoming indispensable for cost-effective grid operation: in Germany there are 1.6 million PVsystems installed, with a nominal power of 46 GW (Bundesverband Solarwirtschaft 2019). The proliferation of PV systems provides a unique opportunity to characterise global irradiance with unprecedented spatiotemporalresolution, which in turn will allow for highly resolved PV power forecasts.
The temperature of photovoltaic modules is modelled as a dynamic function of ambient temperature, shortwave and longwave irradiance and wind speed, in order to allow for a more accurate characterisation of their efficiency. A simple dynamic thermal model is developed by extending an existing parametric steady-state model using an exponential smoothing kernel to include the effect of the heat capacity of the system. The four parameters of the model are fitted to measured data from three photovoltaic systems in the Allgäu region in Germany using non-linear optimisation. The dynamic model reduces the root-mean-square error between measured and modelled module temperature to 1.58 K on average, compared to 3.03 K for the steady-state model, whereas the maximum instantaneous error is reduced from 20.02 to 6.58 K.
Hydrogen is a versatile energy carrier. When produced with renewable energy by water splitting, it is a carbon neutral alternative to fossil fuels. The industrialization process of this technology is currently dominated by electrolyzers powered by solar or wind energy. For small scale applications, however, more integrated device designs for water splitting using solar energy might optimize hydrogen production due to lower balance of system costs and a smarter thermal management. Such devices offer the opportunity to thermally couple the solar cell and the electrochemical compartment. In this way, heat losses in the absorber can be turned into an efficiency boost for the device via simultaneously enhancing the catalytic performance of the water splitting reactions, cooling the absorber, and decreasing the ohmic losses.[1,2] However,integrated devices (sometimes also referred to as “artificial leaves”), currently suffer from a lower technology readiness level (TRL) than the completely decoupled approach.
Integrated solar water splitting devices that produce hydrogen without the use of power inverters operate outdoors and are hence exposed to varying weather conditions. As a result, they might sometimes work at non-optimal operation points below or above the maximum power point of the photovoltaic component, which would directly translate into efficiency losses. Up until now, however, no common parameter describing and quantifying this and other real-life operating related losses (e.g. spectral mismatch) exists in the community. Therefore, the annual-hydrogen-yield-climatic-response (AHYCR) ratio is introduced as a figure of merit to evaluate the outdoor performance of integrated solar water splitting devices. This value is defined as the ratio between the real annual hydrogen yield and the theoretical yield assuming the solar-to-hydrogen device efficiency at standard conditions. This parameter is derived for an exemplary system based on state-of-the-art AlGaAs//Si dual-junction solar cells and an anion exchange membrane electrolyzer using hourly resolved climate data from a location in southern California and from reanalysis data of Antarctica. This work will help to evaluate, compare and optimize the climatic response of solar water splitting devices in different climate zones.
West Africa has a great potential for the application of solar energy systems, as it combines high levels of solar irradiance with a lack of energy production. Southern West Africa is a region with a very high aerosol load. Urbanization, uncontrolled fires, traffic as well as power plants and oil rigs lead to increasing anthropogenic emissions. The naturally circulating north winds bring mineral dust from the Sahel and Sahara and monsoons - sea salt and other oceanic compounds from the south. The EU-funded Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project (2014–2018), dlivered the most complete dataset of the atmosphere over the region to date. In our study, we use in-situ measured optical properties of aerosols from the airborne campaign over the Gulf of Guinea and inland, and from ground measurements in coastal cities.
The rapid increase in solar photovoltaic (PV) installations worldwide has resulted in the electricity grid becoming increasingly dependent on atmospheric conditions, thus requiring more accurate forecasts of incoming solar irradiance. In this context, measured data from PV systems are a valuable source of information about the optical properties of the atmosphere, in particular the cloud optical depth (COD). This work reports first results from an inversion algorithm developed to infer global, direct and diffuse irradiance as well as atmospheric optical properties from PV power measurements, with the goal of assimilating this information into numerical weather prediction (NWP) models.