Refine
H-BRS Bibliography
- yes (8)
Departments, institutes and facilities
Document Type
- Conference Object (5)
- Article (3)
Keywords
- 3D printing (1)
- Accuracy (1)
- Milling (1)
- Monolithic zirconia crowns (MZCs) (1)
- Precision (1)
- Sahel zone (1)
- Trueness (1)
- aerosol (1)
- energy meteorology (1)
- irradiance (1)
Solar energy is one option to serve the rising global energy demand with low environmental Impact [1]. Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections. Clouds are moving on a short term timescale and have a high influence on the available solar radiation, as they absorb, reflect and scatter parts of the incoming light [2]. However, modeling photovoltaic (PV) power yields with a spectral resolution and local cloud information gives new insights on the atmospheric impact on solar energy.
Solar energy is one option to serve the rising global energy demand with low environmental impact.1 Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections. Clouds are moving on a short term timescale and have a high influence on the available solar radiation, as they absorb, reflect and scatter parts of the incoming light.2 However, the impact of cloudiness on photovoltaic power yields (PV) and cloud induced deviations from average yields might vary depending on the technology, location and time scale under consideration.
Impact of atmospheric aerosols on photovoltaic energy production - Scenario for the Sahel zone
(2017)
Photovoltaic (PV) energy is one option to serve the rising global energy need with low environmental impact. PV is of particular interest for local energy solutions in developing countries prone to high solar insolation. In order to assess the PV potential of prospective sites, combining knowledge of the atmospheric state modulating solar radiation and the PV performance is necessary. The present study discusses the PV power as function of atmospheric aerosols in the Sahel zone for clear-sky-days. Daily yields for a polycrystalline silicon PV module are reduced by up to 48 % depending on the climatologically-relevant aerosol abundances.
Trueness and precision of milled and 3D printed root-analogue implants: A comparative in vitro study
(2023)
Trueness and precision of digital light processing fabricated 3D printed monolithic zirconia crowns
(2024)
OBJECTIVES: The present study aimed to evaluate the trueness and precision of monolithic zirconia crowns (MZCs) fabricated by 3D printing and milling techniques. METHODS: A premolar crown was designed after scanning a prepared typodont. Twenty MZCs were fabricated using milling and 3D-printing techniques (n=10). All the specimens were scanned with an industrial scanner, and the scanned data were analyzed using 3D measurement software to evaluate the trueness and precision of each group. Root mean square (RMS) deviations were measured and statistically analyzed (One-way ANOVA, Tukey's, p≤0.05). RESULTS: The trueness of the printed MZC group (140 ± 14 μm) showed a significantly higher RMS value compared to the milled MZCs (96 ± 27 μm,p<0.001). At the same time, the precision of the milled MZCs (61±17 μm) showed a significantly higher RMS value compared to that of the printed MZCs (31±5 μm,p<0.001). CONCLUSIONS: The Fabrication techniques had a significant impact on the accuracy of the MZCs. Milled MZCs showed the highest trueness, while printed MZCs showed the highest precision. All the results were within the clinically acceptable error values. CLINICAL SIGNIFICANCE: Although the trueness of the milled MZCs is higher, the manufacturing accuracy of the 3D-printed MZCs showed clinically acceptable results in terms of trueness and precision. However, additional clinical studies are recommended. Furthermore, the volumetric changes of the material should be considered.