Refine
H-BRS Bibliography
- yes (7)
Departments, institutes and facilities
Document Type
- Conference Object (5)
- Article (2)
Keywords
- Sahel zone (1)
- aerosol (1)
- energy meteorology (1)
- irradiance (1)
- photovoltaic (1)
Impact of atmospheric aerosols on photovoltaic energy production - Scenario for the Sahel zone
(2017)
Photovoltaic (PV) energy is one option to serve the rising global energy need with low environmental impact. PV is of particular interest for local energy solutions in developing countries prone to high solar insolation. In order to assess the PV potential of prospective sites, combining knowledge of the atmospheric state modulating solar radiation and the PV performance is necessary. The present study discusses the PV power as function of atmospheric aerosols in the Sahel zone for clear-sky-days. Daily yields for a polycrystalline silicon PV module are reduced by up to 48 % depending on the climatologically-relevant aerosol abundances.
Solar energy is one option to serve the rising global energy demand with low environmental Impact [1]. Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections. Clouds are moving on a short term timescale and have a high influence on the available solar radiation, as they absorb, reflect and scatter parts of the incoming light [2]. However, modeling photovoltaic (PV) power yields with a spectral resolution and local cloud information gives new insights on the atmospheric impact on solar energy.
Solar energy is one option to serve the rising global energy demand with low environmental impact.1 Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections. Clouds are moving on a short term timescale and have a high influence on the available solar radiation, as they absorb, reflect and scatter parts of the incoming light.2 However, the impact of cloudiness on photovoltaic power yields (PV) and cloud induced deviations from average yields might vary depending on the technology, location and time scale under consideration.