Refine
Departments, institutes and facilities
Document Type
- Conference Object (47)
- Article (17)
- Part of a Book (7)
- Working Paper (2)
- Doctoral Thesis (1)
Year of publication
Keywords
- Global Software Engineering (4)
- Offshoring (3)
- Qualitative research (3)
- Verbraucherinformatik (3)
- Augmented Reality (2)
- Business Ethnography (2)
- Global Software Development (2)
- Human Factors In Software Design (2)
- Methodology (2)
- Software (2)
Beyond HCI and CSCW: Challenges and Useful Practices Towards a Human-Centred Vision of AI and IA
(2019)
Die nutzerInnenfreundliche Formulierung von Zwecken der Datenverarbeitung von Sprachassistenten
(2020)
2019 wurde bekannt, dass mehrere Anbieter von Sprachassistenten Sprachaufnahmen ihrer NutzerInnen systematisch ausgewertet haben. Da in den Datenschutzhinweisen angegeben war, dass Daten auch zur Verbesserung des Dienstes genutzt würden, war diese Nutzung legal. Für die NutzerInnen stellte diese Auswertung jedoch einen deutlichen Bruch mit ihren Privatheitsvorstellungen dar. Das Zweckbindungsprinzip der DSGVO mit seiner Komponente der Zweckspezifizierung fordert neben Flexibilität für den Verarbeiter auch Transparenz für den Verbraucher. Vor dem Hintergrund dieses Interessenkonflikts stellt sich für die HCI die Frage, wie Verarbeitungszwecke von Sprachassistenten gestaltet sein sollten, um beide Anforderungen zu erfüllen. Für die Erhebung einer Nutzerperspektive analysiert diese Studie zunächst Zweckangaben in den Datenschutzhinweisen der dominierenden Sprachassistenten. Darauf aufbauend präsentieren wir Ergebnisse von Fokusgruppen, die sich mit der wahrgenommenen Verarbeitung von Daten von Sprachassistenten aus Nutzersicht befassen. Es zeigt sich, dass bestehende Zweckformulierungen für VerbraucherInnen kaum Transparenz über Folgen der Datenverarbeitung bieten und keine einschränkende Wirkung im Hinblick auf legale Datennutzung erzielen. Unsere Ergebnisse über von Nutzern wahrgenommene Risiken erlauben dabei Rückschlüsse auf die anwenderfreundliche Gestaltung von Verarbeitungszwecken im Sinne einer Design-Ressource.
Diese Studie untersucht die Aneignung und Nutzung von Sprachassistenten wie Google Assistant oder Amazon Alexa in Privathaushalten. Unsere Forschung basiert auf zehn Tiefeninterviews mit Nutzern von Sprachassistenten sowie der Evaluation bestimmter Interaktionen in der Interaktionshistorie. Unsere Ergebnisse illustrieren, zu welchen Anlässen Sprachassistenten im heimischen Umfeld genutzt werden, welche Strategien sich die Nutzer in der Interaktion mit Sprachassistenten angeeignet haben, wie die Interaktion abläuft und welche Schwierigkeiten sich bei der Einrichtung und Nutzung des Sprachassistenten ergeben haben. Ein besonderer Fokus der Studie liegt auf Fehlinteraktionen, also Situationen, in denen die Interaktion scheitert oder zu scheitern droht. Unsere Studie zeigt, dass das Nutzungspotenzial der Assistenten häufig nicht ausgeschöpft wird, da die Interaktion in komplexeren Anwendungsfällen häufig misslingt. Die Nutzer verwenden daher den Sprachassistenten eher in einfachen Anwendungsfällen und neue Apps und Anwendungsfälle werden gar nicht erst ausprobiert. Eine Analyse der Aneignungsstrategien, beispielsweise durch eine selbst erstellte Liste mit Befehlen, liefert Erkenntnisse für die Gestaltung von Unterstützungswerkzeugen sowie die Weiterentwicklung und Optimierung von sprachbasierten Mensch-Maschine-Interfaces.
This paper aspires to develop a deeper understanding of the sharing/collaborative/platform economy, and in particular of the technical mechanisms upon which the digital platforms supporting it are built. In surveying the research literature, the paper identifies a gap between studies from economical, social or socio-technical angles, and presentations of detailed technical solutions. Most cases study larger, ‘monotechnological’ platforms, rather than local platforms that lend components from several technologies. Almost no literature takes a design perspective. Rooted in Sharing & Caring, an EU COST Action (network), the paper presents work to systematically map out functionalities across domains of the sharing economy. The 145 technical mechanisms we collected illustrate how most platforms are depending on a limited number of functionalities that lack in terms of holding communities together. The paper points to the necessity of a better terminology and concludes by discussing challenges and opportunities for the design of future and more inclusive platforms.