Refine
H-BRS Bibliography
- no (3)
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- no (3)
Keywords
- Viral K+ channel (2)
- Algal viruses (1)
- Ba2+ block (1)
- Chloroviruses (1)
- K+ channel evolution (1)
- Kcv (1)
- Kcv channels (1)
- Kir channels (1)
- Mimiviridae (1)
- Phycodnaviridae (1)
Some algal viruses have coding sequences for proteins with structural and functional characteristics of pore modules of complex K+ channels. Here we exploit the structural diversity among these channel orthologs to discover new basic principles of structure/function correlates in K+ channels. The analysis of three similar K+ channels with ≤ 86 amino acids (AA) shows that one channel (Kmpv1) generates an ohmic conductance in HEK293 cells while the other two (KmpvSP1, KmpvPL1) exhibit typical features of canonical Kir channels. Like Kir channels, the rectification of the viral channels is a function of the K+ driving force. Reconstitution of KmpvSP1 and KmpvPL1 in planar lipid bilayers showed rapid channel fluctuations only at voltages negative of the K+ reversal voltage. This rectification was maintained in KCl buffer with 1 mM EDTA, which excludes blocking cations as the source of rectification. This means that rectification of the viral channels must be an inherent property of the channel. The structural basis for rectification was investigated by a chimera between rectifying and non-rectifying channels as well as point mutations making the rectifier similar to the ohmic conducting channel. The results of these experiments exclude the pore with pore helix and selectivity filter as playing a role in rectification. The insensitivity of the rectifier to point mutations suggests that tertiary or quaternary structural interactions between the transmembrane domains are responsible for this type of gating.
Chloroviruses are large, plaque-forming, dsDNA viruses that infect chlorella-like green algae that live in a symbiotic relationship with protists. Chloroviruses have genomes from 290 to 370 kb, and they encode as many as 400 proteins. One interesting feature of chloroviruses is that they encode a potassium ion (K+) channel protein named Kcv. The Kcv protein encoded by SAG chlorovirus ATCV-1 is one of the smallest known functional K+ channel proteins consisting of 82 amino acids. The KcvATCV-1 protein has similarities to the family of two transmembrane domain K+ channel proteins; it consists of two transmembrane α-helixes with a pore region in the middle, making it an ideal model for studying K+ channels. To assess their genetic diversity, kcv genes were sequenced from 103 geographically distinct SAG chlorovirus isolates. Of the 103 kcv genes, there were 42 unique DNA sequences that translated into 26 new Kcv channels. The new predicted Kcv proteins differed from KcvATCV-1 by 1 to 55 amino acids. The most conserved region of the Kcv protein was the filter, the turret and the pore helix were fairly well conserved, and the outer and the inner transmembrane domains of the protein were the most variable. Two of the new predicted channels were shown to be functional K+ channels.
Potassium ion (K+) channels have been observed in diverse viruses that infect eukaryotic marine and freshwater algae. However, experimental evidence for functional K+ channels among these alga-infecting viruses has thus far been restricted to members of the family Phycodnaviridae, which are large, double-stranded DNA viruses within the phylum Nucleocytoviricota. Recent sequencing projects revealed that alga-infecting members of Mimiviridae, another family within this phylum, may also contain genes encoding K+ channels. Here we examine the structural features and the functional properties of putative K+ channels from four cultivated members of Mimiviridae. While all four proteins contain variations of the conserved selectivity filter sequence of K+ channels, structural prediction algorithms suggest that only two of them have the required number and position of two transmembrane domains that are present in all K+ channels. After in vitro translation and reconstitution of the four proteins in planar lipid bilayers, we confirmed that one of them, a 79 amino acid protein from the virus Tetraselmis virus 1 (TetV-1), forms a functional ion channel with a distinct selectivity for K+ over Na+ and a sensitivity to Ba2+. Thus, virus-encoded K+ channels are not limited to Phycodnaviridae but also occur in the members of Mimiviridae. The large sequence diversity among the viral K+ channels implies multiple events of lateral gene transfer.