Refine
H-BRS Bibliography
- yes (12)
Departments, institutes and facilities
Year of publication
Keywords
- Graphene (2)
- Nano-Systems (2)
- Karl Fischer titration (1)
- Molecular Dynamics (1)
- Molecular dynamics (1)
- Silicon Carbides (1)
- aerogels (1)
- amorphous 2D polymer (1)
- antibiotic prophylaxis (1)
- autologous bone graft (1)
We investigated graphene structures grafted with fullerenes. The size of the graphene sheets ranges from 6400 to 640,000 atoms. The fullerenes (C60 and C240) are placed on top of the graphene sheets, using different impact velocities we could distinguish three types of impact. Furthermore, we investigated the changes of the vibrational properties. The modified graphene planes show additional features in the vibronic density of states.
The design of future materials for biotechnological applications via deposition of molecules on surfaces will require not only exquisite control of the deposition procedure, but of equal importance will be our ability to predict the shapes and stability of individual molecules on various surfaces. Furthermore, one will need to be able to predict the structure patterns generated during the self-organization of whole layers of (bio)molecules on the surface. In this review, we present an overview over the current state of the art regarding the prediction and clarification of structures of biomolecules on surfaces using theoretical and computational methods.
Silicon carbide and graphene possess extraordinary chemical and physical properties. Here, these different systems are linked and the changes in structural and dynamic properties are investigated. For the simulations performed a classical molecular dynamic (MD) approach was used. In this approach, a graphene layer (N = 240 atoms) was grafted at different distances on top of a 6H-SiC structure (N = 2400 atoms) and onto a 3C-SiC structure (N = 1728 atoms). The distances between the graphene and the 6H are 1.0, 1.3 and 1.5 Å and the distances between the graphene layer and the 3C-SiC are 2.0, 2.3, and 2.5 Å. Each system has been equilibrated at room temperature until no further relaxation was observed. The 6H-SiC structure in combination with graphene proves to be more stable compared to the combination with 3C-SiC. This can be seen well in the determined energies. Pair distribution functions were influenced slightly by the graphene layer due to steric and energetic changes. This becomes clear from the small shifts of the C-C distances. Interactions as well as bonds between graphene and SiC lead to the fact that small shoulders of the high-frequency SiC-peaks are visible in the spectra and at the same time the high-frequency peaks of graphene are completely absent.
The solvent exchange as one of the most important steps during the manufacturing process of organic aerogels was investigated. This step is crucial as a preparatory step for the supercritical drying, since the pore solvent must be soluble in supercritical carbon dioxide to enable solvent extraction. The development and subsequent optimization of a suitable system with a peristaltic pump for automatic solvent exchange proved to be a suitable approach. In addition, the influence of zeolites on the acceleration of the process was found to be beneficial. To investigate the process, the water content in acetone was determined at different times using Karl Fischer titration. The shrinkage, densities, as well as the surface areas of the aerogels were analyzed. Based on these, the influence of various process parameters on the final structure of the obtained aerogels was investigated and evaluated. Modeling on diffusion in porous materials completes this study.
(1) Background: Autologous bone is supposed to contain vital cells that might improve the osseointegration of dental implants. The aim of this study was to investigate particulate and filtered bone chips collected during oral surgery intervention with respect to their osteogenic potential and the extent of microbial contamination to evaluate its usefulness for jawbone reconstruction prior to implant placement. (2) Methods: Cortical and cortical-cancellous bone chip samples of 84 patients were collected. The stem cell character of outgrowing cells was characterized by expression of CD73, CD90 and CD105, followed by osteogenic differentiation. The degree of bacterial contamination was determined by Gram staining, catalase and oxidase tests and tests to evaluate the genera of the found bacteria (3) Results: Pre-surgical antibiotic treatment of the patients significantly increased viability of the collected bone chip cells. No significant difference in plasticity was observed between cells isolated from the cortical and cortical-cancellous bone chip samples. Thus, both types of bone tissue can be used for jawbone reconstruction. The osteogenic differentiation was independent of the quantity and quality of the detected microorganisms, which comprise the most common bacteria in the oral cavity. (4) Discussion: This study shows that the quality of bone chip-derived stem cells is independent of the donor site and the extent of present common microorganisms, highlighting autologous bone tissue, assessable without additional surgical intervention for the patient, as a useful material for dental implantology.