Refine
H-BRS Bibliography
- yes (6)
Departments, institutes and facilities
Document Type
- Article (3)
- Conference Object (1)
- Doctoral Thesis (1)
- Report (1)
Keywords
Kollaborative Industrieroboter werden für produzierende Unternehmen immer kosteneffizienter. Während diese Systeme für den menschlichen Mitarbeiter eine große Hilfe sein können, stellen sie gleichzeitig ein ernstes Gesundheitsrisiko dar, wenn die zwingend notwendigen Sicherheitsmaßnahmen nur unzureichend umgesetzt werden. Herkömmliche Sicherheitseinrichtungen wie Zäune oder Lichtvorhänge bieten einen guten Schutz, aber solch statische Schutzvorrichtungen sind in neuen, hochdynamischen Arbeitsszenarien problematisch.
Im Forschungsprojekt BeyondSPAI wurde ein Funktionsmuster eines Multisensorsystems zur Absicherung solcher dynamischer Arbeitsszenarien entworfen, implementiert und im Feld getestet. Kern des Systems ist eine robuste optische Materialklassifikation, die mit Hilfe eines intelligenten InGaAs-Kamerasystems Haut von anderen typischen Werkstückoberflächen (z.B. Holz, Metalle od. Kunststoffe) unterscheiden kann. Diese einzigartige Eigenschaft wird genutzt, um menschliche Mitarbeiter zuverlässig zu erkennen, so dass ein konventioneller Roboter in Folge als personenbewusster Cobot arbeiten kann.
Das System ist modular und kann leicht mit weiteren Sensoren verschiedenster Art erweitert werden. Es kann an verschiedene Marken von Industrierobotern angepasst werden und lässt sich schnell an bestehenden Robotersystemen integrieren. Die vier vom System bereitgestellten Sicherheitsausgänge können dazu verwendet werden - abhängig von der durchdrungenen Überwachungszone - entweder eine Warnung auszugeben, die Bewegung des Roboters auf eine sichere Geschwindigkeit zu verlangsamen, oder den Roboter sicher anzuhalten. Sobald alle Zonen wieder als „eindeutig frei von Personen“ identifiziert sind, kann der Roboter wieder beschleunigen, seine ursprüngliche Bewegung wiederaufnehmen und die Arbeit fortsetzen.
The choice of suitable semiconducting metal oxide (MOX) gas sensors for the detection of a specific gas or gas mixture is time-consuming since the sensor’s sensitivity needs to be characterized at multiple temperatures to find its optimal operating conditions. To obtain reliable measurement results, it is very important that the power for the sensor’s integrated heater is stable, regulated and error-free (or error-tolerant). Especially the error-free requirement can be only be achieved if the power supply implements failure-avoiding and failure-detection methods. The biggest challenge is deriving multiple different voltages from a common supply in an efficient way while keeping the system as small and lightweight as possible. This work presents a reliable, compact, embedded system that addresses the power supply requirements for fully automated simultaneous sensor characterization for up to 16 sensors at multiple temperatures. The system implements efficient (avg. 83.3% efficiency) voltage conversion with low ripple output (<32 mV) and supports static or temperature-cycled heating modes. Voltage and current of each channel are constantly monitored and regulated to guarantee reliable operation. To evaluate the proposed design, 16 sensors were screened. The results are shown in the experimental part of this work.
The following work presents algorithms for semi-automatic validation, feature extraction and ranking of time series measurements acquired from MOX gas sensors. Semi-automatic measurement validation is accomplished by extending established curve similarity algorithms with a slope-based signature calculation. Furthermore, a feature-based ranking metric is introduced. It allows for individual prioritization of each feature and can be used to find the best performing sensors regarding multiple research questions. Finally, the functionality of the algorithms, as well as the developed software suite, are demonstrated with an exemplary scenario, illustrating how to find the most power-efficient MOX gas sensor in a data set collected during an extensive screening consisting of 16,320 measurements, all taken with different sensors at various temperatures and analytes.
The simultaneous operation of multiple different semiconducting metal oxide (MOX) gas sensors is demanding for the readout circuitry. The challenge results from the strongly varying signal intensities of the various sensor types to the target gas. While some sensors change their resistance only slightly, other types can react with a resistive change over a range of several decades. Therefore, a suitable readout circuit has to be able to capture all these resistive variations, requiring it to have a very large dynamic range. This work presents a compact embedded system that provides a full, high range input interface (readout and heater management) for MOX sensor operation. The system is modular and consists of a central mainboard that holds up to eight sensor-modules, each capable of supporting up to two MOX sensors, therefore supporting a total maximum of 16 different sensors. Its wide input range is archived using the resistance-to-time measurement method. The system is solely built with commercial off-the-shelf components and tested over a range spanning from 100Ω to 5 GΩ (9.7 decades) with an average measurement error of 0.27% and a maximum error of 2.11%. The heater management uses a well-tested power-circuit and supports multiple modes of operation, hence enabling the system to be used in highly automated measurement applications. The experimental part of this work presents the results of an exemplary screening of 16 sensors, which was performed to evaluate the system’s performance.