Refine
H-BRS Bibliography
- yes (2)
Departments, institutes and facilities
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Keywords
- Affinity proteomics (1)
- Antibodies* (1)
- Antibody analysis (1)
- Antigen analysis (1)
- Assay development (1)
- BLAST (1)
- Dried serum spots (1)
- Immunology* (1)
- Ligand -Receptor Interactions* (1)
- Mass spectrometry (1)
Intact Transition Epitope Mapping - Targeted High-Energy Rupture of Extracted Epitopes (ITEM-THREE)
(2019)
Epitope mapping, which is the identification of antigenic determinants, is essential for the design of novel antibody-based therapeutics and diagnostic tools. ITEM-THREE is a mass spectrometry-based epitope mapping method that can identify epitopes on antigens upon generating an immune complex in electrospray-compatible solutions by adding an antibody of interest to a mixture of peptides from which at least one holds the antibody's epitope. This mixture is nano-electrosprayed without purification. Identification of the epitope peptide is performed within a mass spectrometer that provides an ion mobility cell sandwiched in-between two collision cells and where this ion manipulation setup is flanked by a quadrupole mass analyzer on one side and a time-of-flight mass analyzer on the other side. In a stepwise fashion, immune-complex ions are separated from unbound peptide ions and dissociated to release epitope peptide ions. Immune complex-released peptide ions are separated from antibody ions and fragmented by collision induced dissociation. Epitope-containing peptide fragment ions are recorded, and mass lists are submitted to unsupervised data base search thereby retrieving both, the amino acid sequence of the epitope peptide and the originating antigen. ITEM-THREE was developed with antiTRIM21 and antiRA33 antibodies for which the epitopes were known, subjecting them to mixtures of synthetic peptides of which one contained the respective epitope. ITEM-THREE was then successfully tested with an enzymatic digest of His-tagged recombinant human β-actin and an antiHis-tag antibody, as well as with an enzymatic digest of recombinant human TNFα and an antiTNFα antibody whose epitope was previously unknown.
Dried serum spots that are well prepared can be attractive alternatives to frozen serum samples for shelving specimens in a medical or research center's biobank and mailing freshly prepared serum to specialized laboratories. During the pre-analytical phase, complications can arise which are often challenging to identify or are entirely overlooked. These complications can lead to reproducibility issues, which can be avoided in serum protein analysis by implementing optimized storage and transfer procedures. With a method that ensures accurate loading of filter paper discs with donor or patient serum, a gap in dried serum spot preparation and subsequent serum analysis shall be filled. Pre-punched filter paper discs with a 3 mm diameter are loaded within seconds in a highly reproducible fashion (approximately 10% standard deviation) when fully submerged in 10 μl of serum, named the "Submerge and Dry" protocol. Such prepared dried serum spots can store several hundred micrograms of proteins and other serum components. Serum-borne antigens and antibodies are reproducibly released in 20 μl elution buffer in high yields (approximately 90%). Dried serum spot-stored and eluted antigens kept their epitopes and antibodies their antigen binding abilities as was assessed by SDS-PAGE, 2D gel electrophoresis-based proteomics, and Western blot analysis, suggesting pre-punched filter paper discs as handy solution for serological tests.