Refine
H-BRS Bibliography
- yes (22)
Departments, institutes and facilities
Document Type
- Conference Object (10)
- Article (6)
- Report (4)
- Part of a Book (2)
Year of publication
Keywords
- Aufrecht (1)
- Centrifugation (1)
- EEG (1)
- ERP (1)
- Educational institutions (1)
- Exercise (1)
- FIVIS (1)
- Fahrradfahrsimulator (1)
- Fahrsimulator (1)
- Forschungsbericht (1)
Ziel des hier beschriebenen Forschungsprojekts war die Entwicklung eines prototypischen Fahrradfahrsimulators für den Einsatz in der Verkehrserziehung und im Verkehrssicherheitstraining. Der entwickelte Prototyp soll möglichst universell für verschiedene Altersklassen und Applikationen einsetzbar sowie mobil sein.
The objective of the FIVIS project is to develop a bicycle simulator which is able to simulate real life bicycle ride situations as a virtual scenario within an immersive environment. A sample test bicycle is mounted on a motion platform to enable a close to reality simulation of turns and balance situations. The visual field of the bike rider is enveloped within a multi-screen visualisation environment which provides visual data relative to the motion and activity of the test bicycle. That means the bike rider has to pedal and steer the bicycle as a usual bicycle, while the motion is recorded and processed to control the simulation. Furthermore, the platform is fed with real forces and accelerations that have been logged by a mobile data acquisition system during real bicycle test drives. Thus, using a feedback system makes the movements of the platform match to the virtual environment and the reaction of the driver (e.g. steering angle, step rate).
3D tracking using multiple Nintendo Wii Remotes: a simple consumer hardware tracking approach
(2009)
An easy to build and cost-effective 3D tracking solution is presented, using Nintendo Wii Remotes acting as cameras. As the hardware differs from usual tracking cameras, the calibration and tracking process has to be adapted accordingly. The tracking approach described could be used for tracking the user's motions in video games based upon physical activity (sports, fighting or dancing games), allowing the player to interact with the game in a more intuitive way than by just pressing buttons.
The perceived distance of self motion induced in a stationary observer by optic flow is overestimated (Redlick et al., Vis Res. 2001 41: 213). Here we assessed how different components of translational optic flow contribute to perceived distance traveled. Subjects sat on a stationary bicycle in front of a virtual reality display that extended beyond 90deg on each side. They monocularly viewed a target presented in a virtual hallway wallpapered with stripes that changed colour to prevent tracking individual stripes. Subjects then looked centrally or 30, 60 or 90° eccentrically while their view was restricted to an ellipse with faded edges (25 x 42deg) centered on their fixation. Subjects judged when they had reached the target’s remembered position. Perceptual gain (perceived/actual distance traveled) was highest when subjects were looking in a direction that depended on the simulated speed of motion. Results were modeled as the sum of separate mechanisms sensitive to radial and laminar optic flow. In our display distances were perceived as compressed. However, there was no correlation between perceptual compression and perceived speed of motion. These results suggest that visually induced self motion in virtual displays can be subject to large but predictable error.
This contribution presents an easy to implement 3D tracking approach that works with a single standard webcam. We describe the algorithm and show that it is well suited for being used as an intuitive interaction method in 3D video games. The algorithm can detect and distinguish multiple objects in real-time and obtain their orientation and position relative to the camera. The trackable objects are equipped with planar patterns of five visual markers. By tracking (stereo) glasses worn by the user and adjusting the in-game camera's viewing frustum accordingly, the well-known immersive "screen as a window" effect can be achieved, even without the use of any special tracking equipment.
This contribution describes an optical laser-based user interaction system designed for virtual reality (VR) environments. The project's objective is to realize a 6-DoF user input device for interaction with VR applications running in CAVE-type visualization environments with flat projections walls. In case of a back-projection VR system, in contrast to optical tracking systems, no camera has to be placed within the visualization environment. Instead, cameras observe patterns of laser beam projections from behind the screens. These patterns are emitted by a hand-held input device. The system is robust with respect to partial occlusion of the laser pattern. An inertial measurement unit is integrated into the device in order to improve robustness and precision.
The relative contributions of radial and laminar optic flow to the perception of linear self-motion
(2012)
When illusory self-motion is induced in a stationary observer by optic flow, the perceived distance traveled is generally overestimated relative to the distance of a remembered target (Redlick, Harris, & Jenkin, 2001): subjects feel they have gone further than the simulated distance and indicate that they have arrived at a target's previously seen location too early. In this article we assess how the radial and laminar components of translational optic flow contribute to the perceived distance traveled. Subjects monocularly viewed a target presented in a virtual hallway wallpapered with stripes that periodically changed color to prevent tracking. The target was then extinguished and the visible area of the hallway shrunk to an oval region 40° (h) × 24° (v). Subjects either continued to look centrally or shifted their gaze eccentrically, thus varying the relative amounts of radial and laminar flow visible. They were then presented with visual motion compatible with moving down the hallway toward the target and pressed a button when they perceived that they had reached the target's remembered position. Data were modeled by the output of a leaky spatial integrator (Lappe, Jenkin, & Harris, 2007). The sensory gain varied systematically with viewing eccentricity while the leak constant was independent of viewing eccentricity. Results were modeled as the linear sum of separate mechanisms sensitive to radial and laminar optic flow. Results are compatible with independent channels for processing the radial and laminar flow components of optic flow that add linearly to produce large but predictable errors in perceived distance traveled.
A cost-efficient alternative to outside-in tracking systems for pointing interaction with large displays is to equip the pointing device with a camera, whose images are matched to display content. This work presents the Dynamic Marker Camera Tracking (DMCT) framework for display-based camera tracking. It accounts for typical display characteristics and uses dynamic on-screen markers overlaid to the display content that follow the camera. An example marker implementation and a tracking recovery method are presented. DMCT can measure pointing locations with sub-millimeter precision in large tracking volumes and computes 6-DoF camera poses for 3D interaction. 60 Hz update rate and 24 ms latency were achieved. DMCT's main limitation is the visible marker interfering with display content. In pointing effciency, the prototype is comparable to an OptiTrack system.
Der Einsatz von Agentensystemen ist vielfältig, dennoch sind aktuelle Realisierungen lediglich in der Lage primär regelkonformes oder aber „geskriptetes“ Verhalten auch unter Einsatz von randomisierten Verfahren abzubilden. Für eine realistische Repräsentation sind jedoch auch Abweichungen von den Regeln notwendig, die nicht zufällig sondern kontextbedingt auftreten. Im Rahmen dieses Forschungsprojektes wurde ein realitätsnaher Straßenverkehrssimulator realisiert, der mittels eines detailliert definierten Systems für kognitive Agenten auch diese irregulären Verhaltensweisen generiert und somit ein realistisches Verkehrsverhalten für die Verwendung in VR-Anwendungen simuliert. Durch das Erweitern der Agenten mit psychologischen Persönlichkeitsprofilen, basierend auf dem „Fünf-Faktoren-Modell“, zeigen die Agenten individualisierte und gleichzeitig konsistente Verhaltensmuster. Ein dynamisches Emotionsmodell sorgt zusätzlich für eine situationsbedingte Adaption des Verhaltens, z.B. bei langen Wartezeiten. Da die detaillierte Simulation kognitiver Prozesse, der Persönlichkeitseinflüsse und der emotionalen Zustände erhebliche Rechenleistungen verlangt, wurde ein mehrschichtiger Simulationsansatz entwickelt, der es erlaubt den Detailgrad der Berechnung und Darstellung jedes Agenten während der Simulation stufenweise zu verändern, so dass alle im System befindlichen Agenten konsistent simuliert werden können. Im Rahmen diverser Evaluierungsiterationen in einer bestehenden VR-Anwendung – dem FIVIS-Fahrradfahrsimulator des Antragstellers - konnte eindrucksvoll nachgewiesen werden, dass die realisierten Konzepte die ursprünglich formulierten Forschungsfragestellung überzeugend und effizient lösen.
Virtual reality environments are increasingly being used to encourage individuals to exercise more regularly, including as part of treatment in those with mental health or neurological disorders. The success of virtual environments likely depends on whether a sense of presence can be established, where participants become fully immersed in the virtual environment. Exposure to virtual environments is associated with physiological responses, including cortical activation changes. Whether the addition of a real exercise within a virtual environment alters sense of presence perception, or the accompanying physiological changes, is not known. In a randomized and controlled study design, trials of moderate-intensity exercise (i.e. self-paced cycling) and no-exercise (i.e. automatic propulsion) were performed within three levels of virtual environment exposure. Each trial was 5-min in duration and was followed by post-trial assessments of heart rate, perceived sense of presence, EEG, and mental state. Changes in psychological strain and physical state were generally mirrored by neural activation patterns. Furthermore these change indicated that exercise augments the demands of virtual environment exposures and this likely contributed to an enhanced sense of presence.
The steadily decreasing prices of display technologies and computer graphics hardware contribute to the increasing popularity of multiple-display environments, like large, high-resolution displays. It is therefore necessary that educational organizations give the new generation of computer scientists an opportunity to become familiar with this kind of technology. However, there is a lack of tools that allow for getting started easily. Existing frameworks and libraries that provide support for multi-display rendering are often complex in understanding, configuration and extension. This is critical especially in educational context where the time that students have for their projects is limited and quite short. These tools are also rather known and used in research communities only, thus providing less benefit for future non-scientists. In this work we present an extension for the Unity game engine. The extension allows – with a small overhead – for implementation of applications that are apt to run on both single-display and multi-display systems. It takes care of the most common issues in the context of distributed and multi-display rendering like frame, camera and animation synchronization, thus reducing and simplifying the first steps into the topic. In conjunction with Unity, which significantly simplifies the creation of different kinds of virtual environments, the extension affords students to build mock-up virtual reality applications for large, high-resolution displays, and to implement and evaluate new interaction techniques and metaphors and visualization concepts. Unity itself, in our experience, is very popular among computer graphics students and therefore familiar to most of them. It is also often employed in projects of both research institutions and commercial organizations; so learning it will provide students with qualification in high demand.
Human beings spend much time under the influence of artificial lighting. Often, it is beneficial to adapt lighting to the task, as well as the user’s mental and physical constitution and well-being. This formulates new requirements for lighting - human-centric lighting - and drives a need for new light control methods in interior spaces. In this paper we present a holistic system that provides a novel approach to human-centric lighting by introducing simulation methods into interactive light control, to adapt the lighting based on the user's needs. We look at a simulation and evaluation platform that uses interactive stochastic spectral rendering methods to simulate light sources, allowing for their interactive adjustment and adaption.
Females are influenced more than males by visual cues during many spatial orientation tasks; but females rely more heavily on gravitational cues during visual-vestibular conflict. Are there gender biases in the relative contributions of vision, gravity and the internal representation of the body to the perception of upright? And might any such biases be affected by low gravity? 16 participants (8 female) viewed a highly polarized visual scene tilted ±112° while lying supine on the European Space Agency's short-arm human centrifuge. The centrifuge was rotated to simulate 24 logarithmically spaced g-levels along the long axis of the body (0.04-0.5g at ear-level). The perception of upright was measured using the Oriented Character Recognition Test (OCHART). OCHART uses the ambiguous symbol "p" shown in different orientations. Participants decided whether it was a "p" or a "d" from which the perceptual upright (PU) can be calculated for each visual/gravity combination. The relative contribution of vision, gravity and the internal representation of the body were then calculated. Experiments were repeated while upright. The relative contribution of vision on the PU was less in females compared to males (t=-18.48, p≤0.01). Females placed more emphasis on the gravity cue instead (f:28.4%, m:24.9%) while body weightings were constant (f:63.0%, m:63.2%). When upright (1g) in this and other studies (e.g., Barnett-Cowan et al. 2010, EJN, 31,1899) females placed more emphasis on vision in this task than males. The reduction in weight allocated by females to vision when in simulated low-gravity conditions compared to when upright under normal gravity may be related to similar female behaviour in response to other instances of visual-vestibular conflict. Why this is the case and at which point the perceptual change happens requires further research.
Maintaining orientation in an environment with non-Earth gravity (1 g) is critical for an astronaut's operational performance. Such environments present a number of complexities for balance and motion. For example, when an astronaut tilts due to ascending or descending an inclined plane on the moon, the gravity vector will be tilted correctly, but the magnitude will be different from on earth. If this results in a mis-perceived tilt, then that may lead to postural and perceptual errors, such as mis-perceiving the orientation of oneself or the ground plane and corresponding errors in task judgment.
Die Wahrnehmung des perzeptionellen Aufrecht (perceptual upright, PU) variiert in Abhängigkeit der Gewichtung verschiedener gravitationsbezogener und körperbasierter Merkmale zwischen Kontexten und aufgrund individueller Unterschiede. Ziel des Vorhabens war es, systematisch zu untersuchen, welche Zusammenhänge zwischen visuellen und gravitationsbedingten Merkmalen bestehen. Das Vorhaben baute auf vorangegangen Untersuchungen auf, deren Ergebnisse indizieren, dass eine Gravitation von ca. 0,15g notwendig ist, um effiziente Selbstorientierungsinformationen bereit zu stellen (Herpers et. al, 2015; Harris et. al, 2014).
In dem hier beschriebenen Vorhaben wurden nun gezielt künstliche Gravitationsbedingungen berücksichtigt, um die Gravitationsschwelle, ab der ein wahrnehmbarer Einfluss beobachtbar ist, genauer zu quantifizieren bzw. die oben genannte Hypothese zu bestätigen. Es konnte gezeigt werden, dass die zentripetale Kraft, die auf einer rotierenden Zentrifuge entlang der Längsachse des Körpers wirkt, genauso efektiv wie Stehen mit normaler Schwerkraft ist, um das Gefühl des perzeptionellen Aufrechts auszulösen. Die erzielten Daten deuten zudem darauf hin, dass ein Gravitationsfeld von mindestens 0,15 g notwendig ist, um eine efektive Orientierungsinformation für die Wahrnehmung von Aufrecht zu liefern. Dies entspricht in etwa der Gravitationskraft von 0,17 g, die auf dem Mond besteht. Für eine lineare Beschleunigung des Körpers liegt der vestibulare Schwellenwert bei etwa 0,1 m/s2 und somit liegt der Wert für die Situation auf dem Mond von 1,6 m/s2 deutlich über diesem Schwellenwert.