Refine
H-BRS Bibliography
- yes (7)
Departments, institutes and facilities
Document Type
- Article (3)
- Book (monograph, edited volume) (1)
- Conference Object (1)
- Contribution to a Periodical (1)
- Preprint (1)
Keywords
- Thermal conductivity (2)
- Compressive strength (1)
- Dienstleistung (1)
- Einflussgroesse (1)
- Fiber reinforcement (1)
- Foaming (1)
- Fremdleistung (1)
- Geopolymer (1)
- Geopolymer foams (1)
- Innovationsprozess (1)
Geteilt zu neuer Größe
(2004)
The development of sustainable, environmentally friendly insulation materials with a reduced carbon footprint is attracting increased interest. One alternative to conventional insulation materials are foamed geopolymers. Similar to foamed concrete, the mechanical properties of geopolymer foams can also be improved by using fibers for reinforcement. This paper presents an overview of the latest research findings in the field of fiber-reinforced geopolymer foam concrete with special focus on natural fibers reinforcement. Furthermore, some basic and background information of natural fibers and geopolymer foams are reported. In most of the research, foams are produced either through chemical foaming with hydrogen peroxide or aluminum powder, or through mechanical foaming which includes a foaming agent. However, previous reviews have not sufficiently addresses the fabrication of geopolymer foams by syntactic foams. Finally, recent efforts to reduce the fiber degradation in geopolymer concrete are discussed along with challenges for natural fiber reinforced-geopolymer foam concrete.
New sustainable, environmentally friendly materials for thermal insulation of buildings are necessary to reduce their carbon footprints. In this study, Miscanthus fiber-reinforced geopolymer composites, foamed with sodium dodecyl sulfate (SDS), were developed using fly ash as a geopolymer precursor. The effects of fiber content, fiber size, curing temperature, foaming agent content, fumed silica specific surface area and fumed silica content on thermal conductivity and compressive strength were evaluated using a Plackett-Burman design of experiment. Furthermore, the microstructure of geopolymer composites was investigated using X-ray diffraction (XRD), X-ray micro-computed tomography (μCT) and scanning electron microscopy (SEM). The measured characteristic values were in the following ranges: Thermal conductivity 0.057 W (m K)−1 to 0.127 W (m K)−1, compressive strength 0.007 MPa–0.719 MPa and porosity 49 vol% to 76 vol%. The results reveal an enhancement of thermal conductivity by elevated fiber size and foaming agent content. In contrast, the compressive strength is enhanced by high fiber content. Additionally, SEM images indicate a good interaction between the fibers and the geopolymer matrix, because nearly the whole fiber surface is covered by the geopolymer.
Design and characterization of geopolymer foams reinforced with Miscanthus x giganteus fibers
(2024)
This paper presents the effects of different amounts of fibers and foaming agent, as well as different fiber sizes, on the mechanical and thermal properties of fly ash-based geopolymer foams reinforced with Miscanthus x giganteus fibers. The mechanical properties of the geopolymer foams were measured through compressive strength, and their thermal properties were characterized by thermal conductivity and X-ray micro-computed tomography. Furthermore, design of experiment (DoE) were used to optimize the thermal conductivity and compressive strength of Miscanthus x giganteus reinforced geopolymer foams. In addition, the microstructure was studied using X-ray diffraction (XRD), Field emission scanning electron microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR). Mixtures with a low thermal conductivity of 0.056 W (m K)−1 and a porosity of 79 vol% achieved a compressive strength of only 0.02 MPa. In comparison, mixtures with a thermal conductivity of 0.087 W (m K)−1 and a porosity of 58 vol% achieved a compressive strength of 0.45 MPa.
Design and characterization of geopolymer foams reinforced with Miscanthus x giganteus fibres
(2024)
This paper presents the results of the optimisation and characterization of Miscanthus fibre reinforced geopolymer foams based on fly ash and represents an important step forward in the development of a sustainable and environmentally friendly insulation material. Miscanthus belongs to a promising group of renewable raw materials with favourable thermal insulation properties. Design of experiment (DoE) were used to optimize the thermal conductivity and compressive strength of Miscanthus x giganteus reinforced geopolymer foams. In addition, the samples was analyzed using X-ray diffraction (XRD), Field emission scanning electron microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR). Mixtures with a low thermal conductivity of 0.056 W (m K)−1 and a porosity of 79 vol% achieved a compressive strength of only 0.02 MPa. In comparison, mixtures with a thermal conductivity of 0.087 W (m K)−1 and a porosity of 58 vol% achieved a compressive strength of 0.45 MPa. Based on the determined parameters especially due to the low compressive strength, an application as cavity insulation or insulation between rafters is possible.