Refine
H-BRS Bibliography
- yes (10)
Departments, institutes and facilities
Document Type
- Article (5)
- Conference Object (4)
- Report (1)
Keywords
- polyethylene (3)
- crystallization (2)
- local chain orientation (2)
- mesoscale coarse-graining (2)
- relaxation (2)
- Extrusion blow molding (1)
- Integrative simulation (1)
- Kunststoffhohlkörper (1)
- Materialbeschreibung (1)
- Meso-scale simulation (1)
Ressourceneffiziente Optimierung von Hohlkörpern aus Kunststoff mittels Multiskalensimulation
(2017)
Ressourceneffiziente Optimierung von Hohlkörpern aus Kunststoff mittels Multiskalensimulation
(2017)
Die mechanischen Eigenschaften von extrusionsblasgeformten Kunststoffhohlkörpern hängen wesentlich von den vom Verarbeitungsprozess beeinflussten Materialeigenschaften ab. Ziel der dargestellten Untersuchung ist, prozessabhängige Materialkennwerte in Simulationsprogrammen zu berücksichtigen und damit deren Vorhersagegenauigkeit zu erhöhen. Hierzu ist die Schaffung einer Schnittstelle zwischen Prozess- und Bauteilsimulation notwendig. Darüber hinaus wird vorgestellt, wie Simulationen auf Mikroebene (molekulardynamische Simulationen) genutzt werden können, um Materialkennwerte ohne die Durchführung eines Realexperiments zu ermitteln.
In this study, we investigate the thermo-mechanical relaxation and crystallization behavior of polyethylene using mesoscale molecular dynamics simulations. Our models specifically mimic constraints that occur in real-life polymer processing: After strong uniaxial stretching of the melt, we quench and release the polymer chains at different loading conditions. These conditions allow for free or hindered shrinkage, respectively. We present the shrinkage and swelling behavior as well as the crystallization kinetics over up to 600 ns simulation time. We are able to precisely evaluate how the interplay of chain length, temperature, local entanglements and orientation of chain segments influences crystallization and relaxation behavior. From our models, we determine the temperature dependent crystallization rate of polyethylene, including crystallization onset temperature.
This study investigates the initial stage of the thermo-mechanical crystallization behavior for uni- and biaxially stretched polyethylene. The models are based on a mesoscale molecular dynamics approach. We take constraints that occur in real-life polymer processing into account, especially with respect to the blowing stage of the extrusion blow-molding process. For this purpose, we deform our systems using a wide range of stretching levels before they are quenched. We discuss the effects of the stretching procedures on the micro-mechanical state of the systems, characterized by entanglement behavior and nematic ordering of chain segments. For the cooling stage, we use two different approaches which allow for free or hindered shrinkage, respectively. During cooling, crystallization kinetics are monitored: We precisely evaluate how the interplay of chain length, temperature, local entanglements and orientation of chain segments influence crystallization behavior. Our models reveal that the main stretching direction dominates microscopic states of the different systems. We are able to show that crystallization mainly depends on the (dis-)entanglement behavior. Nematic ordering plays a secondary role.
The mechanical properties of plastic components, especially if they are made of semi-crystalline polymers, are considerably influenced by the process conditions. The degree of crystallization influences thermal and mechanical properties. Even more important is the orientation of molecules due to stretching of the polymer melt. Anisotropic material properties are the result of such orientations. Up to now all these effects are not considered within the simulation models of blow molded parts.