Refine
Departments, institutes and facilities
Document Type
- Conference Object (7)
- Article (3)
- Part of a Book (2)
Keywords
- Data literacy (2)
- Risk Perception (2)
- usability (2)
- AI systems (1)
- AI-Systems (1)
- Alexa (1)
- Communication breakdown (1)
- Conversational user interfaces (1)
- Data visualization (1)
- Datenschutz (1)
AI systems pose unknown challenges for designers, policymakers, and users which aggravates the assessment of potential harms and outcomes. Although understanding risks is a requirement for building trust in technology, users are often excluded from legal assessments and explanations of AI hazards. To address this issue we conducted three focus groups with 18 participants in total and discussed the European proposal for a legal framework for AI. Based on this, we aim to build a (conceptual) model that guides policymakers, designers, and researchers in understanding users’ risk perception of AI systems. In this paper, we provide selected examples based on our preliminary results. Moreover, we argue for the benefits of such a perspective.
Digitaler Verbraucherschutz
(2024)
Verbraucher:innen hinterlassen Spuren in nahezu allen Bereichen und Lebensräumen. Besonders der stetig wachsende digitale Lebensraum ist voll von Informationen und Daten. Durch die Allgegenwärtigkeit datensammelnder Dienste und Geräte wie das Smartphone durchdringen diese immer tiefer auch die analogen Bereiche des Lebens. In diesem Kapitel geht es um Privatsphäre, Verbraucherdaten und die resultierende Cyberkriminalität. Es werden Wege aufgezeigt, wie Verbraucher:innen sensibilisiert und befähigt werden können, um sich selbst, ihre Privatsphäre und ihre Daten zu schützen. Außerdem geben wir einen Überblick, welche Arten von Cyberkriminalität es gibt und was darunter verstanden wird. Hierbei wird auf Verbraucherschutz, Privatsphäre und die verschiedenen Arten des Onlinebetrugs eingegangen. Wir bieten einen Einblick in die „digitale Resilienz“ von Verbraucher:innen und erfassen die verschiedenen Präventions- und Bewältigungsstrategien, die Opfer anwenden.
Die nutzerInnenfreundliche Formulierung von Zwecken der Datenverarbeitung von Sprachassistenten
(2020)
2019 wurde bekannt, dass mehrere Anbieter von Sprachassistenten Sprachaufnahmen ihrer NutzerInnen systematisch ausgewertet haben. Da in den Datenschutzhinweisen angegeben war, dass Daten auch zur Verbesserung des Dienstes genutzt würden, war diese Nutzung legal. Für die NutzerInnen stellte diese Auswertung jedoch einen deutlichen Bruch mit ihren Privatheitsvorstellungen dar. Das Zweckbindungsprinzip der DSGVO mit seiner Komponente der Zweckspezifizierung fordert neben Flexibilität für den Verarbeiter auch Transparenz für den Verbraucher. Vor dem Hintergrund dieses Interessenkonflikts stellt sich für die HCI die Frage, wie Verarbeitungszwecke von Sprachassistenten gestaltet sein sollten, um beide Anforderungen zu erfüllen. Für die Erhebung einer Nutzerperspektive analysiert diese Studie zunächst Zweckangaben in den Datenschutzhinweisen der dominierenden Sprachassistenten. Darauf aufbauend präsentieren wir Ergebnisse von Fokusgruppen, die sich mit der wahrgenommenen Verarbeitung von Daten von Sprachassistenten aus Nutzersicht befassen. Es zeigt sich, dass bestehende Zweckformulierungen für VerbraucherInnen kaum Transparenz über Folgen der Datenverarbeitung bieten und keine einschränkende Wirkung im Hinblick auf legale Datennutzung erzielen. Unsere Ergebnisse über von Nutzern wahrgenommene Risiken erlauben dabei Rückschlüsse auf die anwenderfreundliche Gestaltung von Verarbeitungszwecken im Sinne einer Design-Ressource.
Diese Studie untersucht die Aneignung und Nutzung von Sprachassistenten wie Google Assistant oder Amazon Alexa in Privathaushalten. Unsere Forschung basiert auf zehn Tiefeninterviews mit Nutzern von Sprachassistenten sowie der Evaluation bestimmter Interaktionen in der Interaktionshistorie. Unsere Ergebnisse illustrieren, zu welchen Anlässen Sprachassistenten im heimischen Umfeld genutzt werden, welche Strategien sich die Nutzer in der Interaktion mit Sprachassistenten angeeignet haben, wie die Interaktion abläuft und welche Schwierigkeiten sich bei der Einrichtung und Nutzung des Sprachassistenten ergeben haben. Ein besonderer Fokus der Studie liegt auf Fehlinteraktionen, also Situationen, in denen die Interaktion scheitert oder zu scheitern droht. Unsere Studie zeigt, dass das Nutzungspotenzial der Assistenten häufig nicht ausgeschöpft wird, da die Interaktion in komplexeren Anwendungsfällen häufig misslingt. Die Nutzer verwenden daher den Sprachassistenten eher in einfachen Anwendungsfällen und neue Apps und Anwendungsfälle werden gar nicht erst ausprobiert. Eine Analyse der Aneignungsstrategien, beispielsweise durch eine selbst erstellte Liste mit Befehlen, liefert Erkenntnisse für die Gestaltung von Unterstützungswerkzeugen sowie die Weiterentwicklung und Optimierung von sprachbasierten Mensch-Maschine-Interfaces.
Sprachassistenten wie Alexa oder Google Assistant sind aus dem Alltag vieler VerbraucherInnen nicht mehr wegzudenken. Sie überzeugen insbesondere durch die sprachbasierte und somit freihändige Steuerung und mitunter auch den unterhaltsamen Charakter. Als häuslicher Lebensmittelpunkt sind die häufigsten Aufstellungsorte das Wohnzimmer und die Küche, da sich Haushaltsmitglieder dort die meiste Zeit aufhalten und das alltägliche Leben abspielt. Dies bedeutet allerdings ebenso, dass an diesen Orten potenziell viele Daten erfasst und gesammelt werden können, die nicht für den Sprachassistenten bestimmt sind. Demzufolge ist nicht auszuschließen, dass der Sprachassistent – wenn auch versehentlich – durch Gespräche oder Geräusche aktiviert wird und Aufnahmen speichert, selbst wenn eine Aktivierung unbewusst von Anwesenden bzw. von anderen Geräten (z. B. Fernseher) erfolgt oder aus anderen Räumen kommt. Im Rahmen eines Forschungsprojekts haben wir dazu NutzerInnen über Ihre Nutzungs- und Aufstellungspraktiken der Sprachassistenten befragt und zudem einen Prototyp getestet, der die gespeicherten Interaktionen mit dem Sprachassistenten sichtbar macht. Dieser Beitrag präsentiert basierend auf den Erkenntnissen aus den Interviews und abgeleiteten Leitfäden aus den darauffolgenden Nutzungstests des Prototyps eine Anwendung zur Beantragung und Visualisierung der Interaktionsdaten mit dem Sprachassistenten. Diese ermöglicht es, Interaktionen und die damit zusammenhängende Situation darzustellen, indem sie zu jeder Interaktion die Zeit, das verwendete Gerät sowie den Befehl wiedergibt und unerwartete Verhaltensweisen wie die versehentliche oder falsche Aktivierung sichtbar macht. Dadurch möchten wir VerbraucherInnen für die Fehleranfälligkeit dieser Geräte sensibilisieren und einen selbstbestimmteren und sichereren Umgang ermöglichen.
Voice assistants (VA) collect data about users’ daily life including interactions with other connected devices, musical preferences, and unintended interactions. While users appreciate the convenience of VAs, their understanding and expectations of data collection by vendors are often vague and incomplete. By making the collected data explorable for consumers, our research-through-design approach seeks to unveil design resources for fostering data literacy and help users in making better informed decisions regarding their use of VAs. In this paper, we present the design of an interactive prototype that visualizes the conversations with VAs on a timeline and provides end users with basic means to engage with data, for instance allowing for filtering and categorization. Based on an evaluation with eleven households, our paper provides insights on how users reflect upon their data trails and presents design guidelines for supporting data literacy of consumers in the context of VAs.
As voice assistants (VAs) become more advanced leveraging Large Language Models (LLMs) and natural language processing, their potential for accountable behavior expands. Yet, the long-term situational effectiveness of VAs’ accounts when errors occur remains unclear. In our 19-month exploratory study with 19 households, we investigated the impact of an Alexa feature that allows users to inquire about the reasons behind its actions. Our findings indicate that Alexa's accounts are often single, decontextualized responses that led to users’ alternative repair strategies over the long term, such as turning off the device, rather than initiating a dialogue about what went wrong. Through role-playing workshops, we demonstrate that VA interactions should facilitate explanatory dialogues as dynamic exchanges that consider a range of speech acts, recognizing users’ emotional states and the context of interaction. We conclude by discussing the implications of our findings for the design of accountable VAs.
When dialogues with voice assistants (VAs) fall apart, users often become confused or even frustrated. To address these issues and related privacy concerns, Amazon recently introduced a feature allowing Alexa users to inquire about why it behaved in a certain way. But how do users perceive this new feature? In this paper, we present preliminary results from research conducted as part of a three-year project involving 33 German households. This project utilized interviews, fieldwork, and co-design workshops to identify common unexpected behaviors of VAs, as well as users’ needs and expectations for explanations. Our findings show that, contrary to its intended purpose, the new feature actually exacerbates user confusion and frustration instead of clarifying Alexa's behavior. We argue that such voice interactions should be characterized as explanatory dialogs that account for VA’s unexpected behavior by providing interpretable information and prompting users to take action to improve their current and future interactions.
Voice assistants (VAs) in households are becoming increasingly commonplace, with many users expressing their appreciation of the devices’ convenience. Nonetheless, a notable number of users have raised concerns that the devices are ‘always listening’, and that there is a lack of clear information from providers about the data collected and processed through their microphones. Adopting a socio-informatics research perspective, we used the living lab approach to work with users over three years to investigate their uncertainties regarding the data collected by VAs in everyday usage. Based on our findings from interviews, fieldwork, and participatory design workshops with 35 households, we developed the web tool “CheckMyVA” to support users to access and visualize their own VA data. This chapter presents the observations and findings of the three-year study by outlining the implemented features of the tool and reflecting on how its design can help improve data literacy and enable users to reflect on their long-term interactions with VAs, ultimately serving to ‘demystify’ the technology.
AI (artificial intelligence) systems are increasingly being used in all aspects of our lives, from mundane routines to sensitive decision-making and even creative tasks. Therefore, an appropriate level of trust is required so that users know when to rely on the system and when to override it. While research has looked extensively at fostering trust in human-AI interactions, the lack of standardized procedures for human-AI trust makes it difficult to interpret results and compare across studies. As a result, the fundamental understanding of trust between humans and AI remains fragmented. This workshop invites researchers to revisit existing approaches and work toward a standardized framework for studying AI trust to answer the open questions: (1) What does trust mean between humans and AI in different contexts? (2) How can we create and convey the calibrated level of trust in interactions with AI? And (3) How can we develop a standardized framework to address new challenges?
AI-powered systems pose unknown challenges for designers, policymakers, and users, making it more difficult to assess potential harms and outcomes. Although understanding risks is a requirement for building trust in technology, users are often excluded from risk assessments and explanations in policy and design. To address this issue, we conducted three workshops with 18 participants and discussed the EU AI Act, which is the European proposal for a legal framework for AI regulation. Based on results of these workshops, we propose a user-centered conceptual model with five risk dimensions (Design and Development, Operational, Distributive, Individual, and Societal) that includes 17 key risks. We further identify six criteria for categorizing use cases. Our conceptual model (1) contributes to responsible design discourses by connecting the risk assessment theories with user-centered approaches, and (2) supports designers and policymakers in more strongly considering a user perspective that complements their own expert views.