Refine
Department, Institute
Document Type
- Article (31)
- Part of a Book (8)
- Conference Object (6)
- Preprint (1)
- Report (1)
Year of publication
Keywords
- stem cells (7)
- Regenerative medicine (4)
- Tissue engineering (4)
- biomaterial (4)
- drug release (4)
- osteogenesis (4)
- Mesenchymal stem cells (3)
- Scaffolds (3)
- Stem cells (3)
- angiogenesis (3)
Embryonic stem cells (ES) have the potential of long-term viability, selfrenewal and pluripotency which makes them interesting candidates for tissue engineering and gene therapy applications. On the other hand ethical and political issues arise while using theses cells and severe problems such as their tumorgenicity have not been solved yet. In the last couple of month a new source of cells with stem cell character was developed, the induced pluripotent stem cells (iPS). These cells are derived from differentiated adult cells via transduction of three transcription factors and show features similar to embryonic stem cells. Unfortunately, this includes the tumorgenicity which is even higher in those cells since the transcription factor transduction needed until now, is performed with retrovial vectors, which have a tumor potential on their own. Thus, adult stem cells are investigated extensively as alternative source of self-renewing cells. Human mesenchymal stem cells (HMSCs), which have in addition the advantage of potential autologous transplantation, can be found in various differentiated tissues since they are needed for maintenance and repair. They can be differentiated in chondrogenic, osteogenic, adipogenic and myogenic lineages which makes them an excellent tool for future tissue replacement strategies.
Human mesenchymal stem cells (HMSCs) which are isolated from bone marrow stroma, peripheral blood, dermis, muscle and adipose tissue have the advantage of potential autologous transplantation ability. They can be differentiated into chondrogenic, osteogenic, adipogenic and myogenic lineages. Problems of stem cells from bone marrow are low cell numbers, low isolated volumes, pain, and to some extent ethical concerns. The isolation of mesenchymal stem cells from human adipose tissue was recently identified as an alternative source, since these cells are easy to obtain in big cell numbers. Adipose tissue is derived from embryonic mesoderm and contains a heterogeneous stromal cell population. To achieve lineage-specific differentiation of these cells they have to be cultured in media supplemented with appropriate factors. Inductions of the cells into multiple mesenchymal lineages resulted in the expression of several lineage-specific genes, proteins and specific metabolic activity. In conclusion, the potential benefit of the multi-germline capacity of HMSCs seems to be a promising approach for allogenic cell therapy and human tissue engineering.
Adult stem cells, including adipose tissue-derived mesenchymal stem cells (MSCs) or ectomesenchymal dental follicle cells (DFCs), attract considerable attention for their potential to differentiate into lineages, which are of major interest in the field of Regenerative Medicine. Purinergic receptors exert a wide range of biological actions in many cell and tissue types through extracellular nucleotides. Little is known about P2 receptors in adult stem cells and changes in their expression levels during differentiation. All known P2 receptors have been investigated, and a variety of P2X and P2Y receptor subtypes were detected in MSCs. Studies investigating intracellular calcium levels on receptor stimulation demonstrated that the found P2 receptors are metabolically active. Interestingly, up- or downregulation of several P2 receptor subtypes at gene and protein level was observed during adipogenic and osteogenic differentiation, and the effect on differentiation was directly influenced by both the application of agonists/antagonists and apyrase-induced nucleotide cleavage. Here, we show for the first time that the combination of several P2 receptors plays a role in the differentiation of adult stem cells. The expression pattern of the P2 receptors, as well as their fate in differentiation, varies in stem cells of mesenchymal origin if compared with stem cells of ectomesenchymal origin. The subtypes P2X6, P2Y4, and P2Y14 seem to be pivotal regulators in MSC commitment, as they are regulated in both adipogenic and osteogenic differentiation of adipose tissue-derived stem cells and DFCs. These findings provide new insights into the differentiation processes and might reveal novel options to influence stem cell fate in future applications.
Atherosclerosis is a chronic disease of the arteries and accounts for about 50 percent of all deaths in industrialized countries. For its treatment, patients primarily need to undergo lifestyle changes, concerning their diet or sportive behavior, while additional pharmaceutical approaches help to reduce major risk factors such as hypertension and hyperlipidemia. However, these two areas of treatment are only briefly mentioned here. Instead, this article focuses on literature and patents from the last decade focusing on invasive surgical procedures necessary for treatment of diseased blood vessels in severe cases of atherosclerosis. Described herein are synthetic grafts and so-called autografts, which are harvested from the patient for bypass surgery. In addition, implantable stents are discussed, which deal with different atherosclerotic aspects, such as restenosis, re-endothelialization, neointimal hyperplasia and thrombosis. And finally, publications and inventions are presented from the relatively new field of artificial tissue engineering incorporating stem cells or biomaterials to construct new vessels as substitutes for diseased veins and arteries.
Transient up-regulation of P2 receptors influence differentiation of human mesenchymal stem cells
(2012)
Despite recent advances in medical procedures, cardiovascular disease remains a clinical challenge and the leading cause of mortality in the western world. The condition causes progressive smooth muscle cell (SMC) dedifferentiation, proliferation, and migration that contribute to vascular restenosis. The incidence of disease of the internal mammary artery (IMA), however, is much lower than in nearly all other arteries. The etiology of this IMA disease resistance is not well understood. Here, using paired primary IMA and coronary artery SMCs, serum stimulation, siRNA knockdowns, and verifications in porcine vessels in vivo, we investigate the molecular mechanisms that could account for this increased disease resistance of internal mammary SMCs. We show that the residue-specific phosphorylation profile of the retinoblastoma tumor suppressor protein (Rb) appears to differ significantly between IMA and coronary artery SMCs in cultured human cells. We also report that the differential profile of Rb phosphorylation may follow as a consequence of differences in the content of cyclin-dependent kinase 2 (CDK2) and the CDK4 phosphorylation inhibitor p15. Finally, we present evidence that siRNA-mediated CDK2 knockdown alters the profile of Rb phosphorylation in coronary artery SMCs, as well as the proliferative response of these cells to mitogenic stimulation. The intrinsic functional and protein composition specificity of the SMCs population in the coronary artery may contribute to the increased prevalence of restenosis and atherosclerosis in the coronary arteries as compared with the internal mammary arteries.
Bone tissue engineering is an ever-changing, rapidly evolving, and highly interdisciplinary field of study, where scientists try to mimic natural bone structure as closely as possible in order to facilitate bone healing. New insights from cell biology, specifically from mesenchymal stem cell differentiation and signaling, lead to new approaches in bone regeneration. Novel scaffold and drug release materials based on polysaccharides gain increasing attention due to their wide availability and good biocompatibility to be used as hydrogels and/or hybrid components for drug release and tissue engineering. This article reviews the current state of the art, recent developments, and future perspectives in polysaccharide-based systems used for bone regeneration.
A major challenge modern society has to face is the increasing need for tissue regeneration due to degenerative diseases or tumors, but also accidents or warlike conflicts. There is great hope that stem cell-based therapies might improve current treatments of cardiovascular diseases, osteochondral defects or nerve injury due to the unique properties of stem cells such as their self-renewal and differentiation potential. Since embryonic stem cells raise severe ethical concerns and are prone to teratoma formation, adult stem cells are still in the focus of research. Emphasis is placed on cellular signaling within these cells and in between them for a better understanding of the complex processes regulating stem cell fate. One of the oldest signaling systems is based on nucleotides as ligands for purinergic receptors playing an important role in a huge variety of cellular processes such as proliferation, migration and differentiation. Besides their natural ligands, several artificial agonists and antagonists have been identified for P1 and P2 receptors and are already used as drugs. This review outlines purinergic receptor expression and signaling in stem cells metabolism. We will briefly describe current findings in embryonic and induced pluripotent stem cells as well as in cancer-, hematopoietic-, and neural crest-derived stem cells. The major focus will be placed on recent findings of purinergic signaling in mesenchymal stem cells addressed in in vitro and in vivo studies, since stem cell fate might be manipulated by this system guiding differentiation towards the desired lineage in the future.
Bone regeneration and replacement is a major focus in regenerative medicine since degenerative diseases and tumor surgery as well as accidents or dangerous recreational behavior is leading to an increasing need for bone reconstruction strategies. Especially for critical size bone defects, tissue engineering with mesenchymal stem cells is extensively studied because these cells are functioning as precursors for osteoblast in vivo. Nevertheless to reproduce the complex interaction of various factors in vitro is not an easy approach and further investigations have to be done. The status quo is summarized. A variety of growth and transcription factors are known to be involved in osteogenesis with bone morphogenetic proteins (BMPs) and the transcription factor Runx2 being the most extensively studied ones. But also PPAR γ and Osterix are generally regarded as the master regulators of osteoblast differentiation. Recently the large family of purinergic receptors has proven to be essential molecules in osteogenesis as well. In addition, scaffolding is needed to create a three-dimensional tissue. Recent developments in scaffold design are summarized, including natural and synthetic materials with or without the use of bioactive molecules constructed to mimic the natural environment. The status quo of scaffold fabrication methods such as 3D nanoprinting and their influence on cell-scaffold interactions is discussed. In this review we summarize the most interesting results and our related work focusing on two joined approaches: 1) the complex interaction of the most promising factors improving or accelerating osteogenic differentiation and ii) the development of scaffold materials with osteoconductive and osteoinductive properties.
Mesenchymal Stem Cells
(2020)
Hox genes are an evolutionary highly conserved gene family. They determine the anterior-posterior body axis in bilateral organisms and influence the developmental fate of cells. Embryonic stem cells are usually devoid of any Hox gene expression, but these transcription factors are activated in varying spatial and temporal patterns defining the development of various body regions. In the adult body, Hox genes are among others responsible for driving the differentiation of tissue stem cells towards their respective lineages in order to repair and maintain the correct function of tissues and organs. Due to their involvement in the embryonic and adult body, they have been suggested to be useable for improving stem cell differentiations in vitro and in vivo. In many studies Hox genes have been found as driving factors in stem cell differentiation towards adipogenesis, in lineages involved in bone and joint formation, mainly chondrogenesis and osteogenesis, in cardiovascular lineages including endothelial and smooth muscle cell differentiations, and in neurogenesis. As life expectancy is rising, the demand for tissue reconstruction continues to increase. Stem cells have become an increasingly popular choice for creating therapies in regenerative medicine due to their self-renewal and differentiation potential. Especially mesenchymal stem cells are used more and more frequently due to their easy handling and accessibility, combined with a low tumorgenicity and little ethical concerns. This review therefore intends to summarize to date known correlations between natural Hox gene expression patterns in body tissues and during the differentiation of various stem cells towards their respective lineages with a major focus on mesenchymal stem cell differentiations. This overview shall help to understand the complex interactions of Hox genes and differentiation processes all over the body as well as in vitro for further improvement of stem cell treatments in future regenerative medicine approaches.