Refine
Departments, institutes and facilities
Document Type
- Article (11)
- Conference Object (10)
- Part of a Book (6)
- Report (5)
- Preprint (2)
- Book (monograph, edited volume) (1)
- Doctoral Thesis (1)
- Other (1)
Year of publication
Keywords
- Method of lines (5)
- Hydrogen storage (3)
- Metal hydride storage (2)
- Order reduction (2)
- Peer methods (2)
- Shallow water equations (2)
- W methods (2)
- Approximated Jacobian (1)
- Beispiele in MATLAB und Julia (1)
- Coupling mechanism (1)
For many practical problems an efficient solution of the one-dimensional shallow water equations (Saint-Venant equations) is important, especially when large networks of rivers, channels or pipes are considered. In order to test and develop numerical methods four test problems are formulated. These tests include the well known dam break and hydraulic jump problems and two steady state problems with varying channel bottom, channel width and friction.
Von Fluiden durchströmte Rohr- und Kanalnetzwerke spielen in vielen technischen Anwendungen eine zentrale Rolle. Die beschreibenden hyperbolischen Modellgleichungen basieren auf Erhaltungsgesetzen von Masse, Impuls und Energie. Dazu können Konvektions-Diffusions-Reaktionsgleichungen kommen, falls die Fluide Inhaltsstoffe transportieren und deren chemisch-biologische Reaktionen betrachtet werden. Für die verschiedenen Modellgleichungen wird ein einheitlicher numerischer Lösungsansatz vorgeschlagen. Die Ortsdiskretisierung erfolgt mit dem Kurganov-Levi Verfahren. Damit können Stoßwellen aufgelöst werden, ohne auf die Eigenstruktur der hyperbolischen Systeme zurück zu greifen. Je nach Anwendungsgebiet können dann unterschiedliche Verfahren zur Lösung der entstehenden Systeme gewöhnlicher oder differential-algebraischer Gleichungssysteme eingesetzt werden. Anhand von Testproblemen mit unstetigem Lösungsverlauf wird die Eignung der gewählten Diskretisierungsansätze demonstriert.
The simulation of fluid flows is of importance to many fields of application, especially in industry and infrastructure. The modelling equations applied describe a coupled system of non-linear, hyperbolic partial differential equations given by one-dimensional shallow water equations that enable the consistent implementation of free surface flows in open channels as well as pressurised flows in closed pipes. The numerical realisation of these equations is complicated and challenging to date due to their characteristic properties that are able to cause discontinuous solutions.
Neue technologische Entwicklungen basieren immer mehr auf einer
zunehmenden Mathematisierung, gerade in den Ingenieurwissenschaften.
Nicht erst seit PISA ist jedoch zu beobachten, dass sich das
belastbare mathematische Grundwissen vieler Studienanfänger in den letzten Jahren verringert hat.
Im vorliegenden Beitrag wird dieses Spannungsfeld, in dem sich die Ingenieurmathematik befindet, aus Sicht von Fachhochschuldozenten beschrieben. Ausgehend von den Ausbildungszielen der Ingenieurmathematik werden Anforderungen an die Schulmathematik abgeleitet.
Diese Anforderungen werden beispielhaft für die Einführung und den Umgang mit den mathematischen Objekten Zahlen, Terme, Gleichungen und Funktionen konkretisiert.
Ziel ist eine Sensibilisierung von Mathematiklehrerinnen und -lehrern, um ihre Schulabsolventinnen und -absolventen besser für ein zukünftiges ingenieurwissenschaftliches Studium zu rüsten.
Since being introduced in the sixties and seventies, semi-implicit RosenbrockWanner (ROW) methods have become an important tool for the timeintegration of ODE and DAE problems. Over the years, these methods have been further developed in order to save computational effort by regarding approximations with respect to the given Jacobian [5], reduce effects of order reduction by introducing additional conditions [2, 4] or use advantages of partial explicit integration by considering underlying Runge-Kutta formulations [1]. As a consequence, there is a large number of different ROW-type schemes with characteristic properties for solving various problem formulations given in literature today.
Die im Folgenden dargestellten wichtigsten Ergebnisse des Teilprojektes 5 "Mathematische Beschreibung der relevanten physikalischen Prozesse und numerische Simulation von Wasseraufbereitung und -verteilung" beziehen sich auf die Arbeitspakete 2 "Daten und Methoden zum Modellaufbau, zur Zustandsschätzung, Prognose und Bewertung" und 3 "Physikalische Modelle und Numerische Verfahren".
Rosenbrock–Wanner methods for systems of stiff ordinary differential equations are well known since the seventies. They have been continuously developed and are efficient for differential-algebraic equations of index-1, as well. Their disadvantage that the Jacobian matrix has to be updated in every time step becomes more and more obsolete when automatic differentiation is used. Especially the family of Rodas methods has proven to be a standard in the Julia package DifferentialEquations. However, the fifth-order Rodas5 method undergoes order reduction for certain problem classes. Therefore, the goal of this paper is to compute a new set of coefficients for Rodas5 such that this order reduction is reduced. The procedure is similar to the derivation of the methods Rodas4P and Rodas4P2. In addition, it is possible to provide new dense output formulas for Rodas5 and the new method Rodas5P. Numerical tests show that for higher accuracy requirements Rodas5P always belongs to the best methods within the Rodas family.
Power-to-gas-to-X systems consisting of photovoltaic cells, proton-exchange membrane electrolysis, hydrogen storage based on metal hydrides, proton-exchange membrane fuel cells and buffer batteries could be used to meet heat and electricity demands of homes, businesses, or small districts. The actual size of the individual components and their interplay have to be optimized for the technical and economic feasibility of the overall system. A simulation-based optimization workflow would be a suitable way to accomplish this task, but there are hardly any tools that can simultaneously simulate power, fluid and heat flows of such systems and efficiently perform their optimization. In this paper, a multiphysical energy system simulation and optimization tool is introduced which models electrochemical and thermodynamic processes simultaneously, including modern equations of state and an own numerical solver for the arising differential–algebraic system of equations, and provides new methods for the calibration of parameters of the metal hydride storage, proton-exchange membrane electrolyzer and fuel cell as well as a metamodel-based approach for sizing optimization. As a demonstrator for the novel tool, a simulation model of a hydrogen lab is successfully set up based on experimental results. The novel tool is able to extract polarization and jump curves of the fuel cell, determine a first temperature and pressure dependency of the efficiency of the electrolysis coupled with the metal hydride storage and speed up sizing optimization through metamodeling by a factor 262.1 at 4.9% and 32.7 at 3.3% accuracy.
Modellbildung und Simulation
(2024)
In diesem Lehrbuch werden die für Ingenieurinnen und Ingenieure relevanten mathematischen Problemklassen eingeführt und dazu vorhandene Standardalgorithmen vorgestellt. Anhand vielfältiger konkreter Beispiele werden Prinzipien der Modellbildung praktisch angewendet, Implementierungen demonstriert und Simulationsergebnisse dargestellt. Dafür werden sowohl der Industriestandard MATLAB wie auch die recht junge und schnell wachsende Programmiersprache Julia verwendet. Mit Hilfe beider Implementierungen kann der oder die Leser:in sehr einfach die Gemeinsamkeiten und Unterschiede erkennen und ist für einen Umstieg vom kommerziellen Produkt MATLAB auf die freie Sprache Julia oder umgekehrt gut vorbereitet.
In this contribution, we perform computer simulations to expedite the development of hydrogen storages based on metal hydride. These simulations enable in-depth analysis of the processes within the systems which otherwise could not be achieved. That is, because the determination of crucial process properties require measurement instruments in the setup which are currently not available. Therefore, we investigate the reliability of reaction values that are determined by a design of experiments.
Specifically, we first explain our model setup in detail. We define the mathematical terms to obtain insights into the thermal processes and reaction kinetics. We then compare the simulated results to measurements of a 5-gram sample consisting of iron-titanium-manganese (FeTiMn) to obtain the values with the highest agreement with the experimental data. In addition, we improve the model by replacing the commonly used Van’t-Hoff equation by a mathematical expression of the pressure-composition-isotherms (PCI) to calculate the equilibrium pressure.
Finally, the parameters’ accuracy is checked in yet another with an existing metal hydride system. The simulated results demonstrate high concordance with experimental data, which advocate the usage of approximated kinetic reaction properties by a design of experiments for further design studies. Furthermore, we are able to determine process parameters like the entropy and enthalpy.
In this paper, a gas-to-power (GtoP) system for power outages is digitally modeled and experimentally developed. The design includes a solid-state hydrogen storage system composed of TiFeMn as a hydride forming alloy (6.7 kg of alloy in five tanks) and an air-cooled fuel cell (maximum power: 1.6 kW). The hydrogen storage system is charged under room temperature and 40 bar of hydrogen pressure, reaching about 110 g of hydrogen capacity. In an emergency use case of the system, hydrogen is supplied to the fuel cell, and the waste heat coming from the exhaust air of the fuel cell is used for the endothermic dehydrogenation reaction of the metal hydride. This GtoP system demonstrates fast, stable, and reliable responses, providing from 149 W to 596 W under different constant as well as dynamic conditions. A comprehensive and novel simulation approach based on a network model is also applied. The developed model is validated under static and dynamic power load scenarios, demonstrating excellent agreement with the experimental results.