Refine
H-BRS Bibliography
- yes (15)
Departments, institutes and facilities
Document Type
- Conference Object (6)
- Article (5)
- Patent (2)
- Report (2)
Year of publication
Keywords
- Explosives (2)
- Bulk detection (1)
- Echtzeitüberwachung (1)
- Explosivstoff (1)
- Frequenzauswertung (1)
- Gas sensors (1)
- Gasanalyse (1)
- Heterogenes Sensorsystem (1)
- Home made explosives (1)
- Improvised explosive devices (1)
Die Detektion von Explosivstoffen stellt ein zentrales Feld der zivilen Sicherheitsforschung dar. Eine besondere Herausforderung liegt hierbei in dem Nachweis verpackter Substanzen, wie es bei Unkonventionellen Spreng- und Brandvorrichtung (USBV) häufig der Fall ist. Derzeit eingesetzte Verfahren arbeiten meist mit bildgebenden Techniken, durch die sich ein Anfangsverdacht ergibt. Der tatsächliche chemische Inhalt der USBV lässt sich jedoch nicht exakt ermitteln. Eine genaue Beurteilung der Gefährdung durch solche Substanzen ist allerdings von großer Bedeutung, insbesondere wenn die Entschärfung des Objekts in bewohntem Gebiet stattfinden muss. In der vorliegenden Arbeit wird ein Verfahren vorgestellt, das sich als Verifikationsverfahren bei bestehendem Anfangsverdacht gezielt einsetzen lässt. Hierzu wird mittels Laserbohrtechnik zunächst die äußere Hülle des zu untersuchenden Gegenstandes durchdrungen. Anschließend finden eine lasergestützte Probenahme des Inhalts sowie die Detektion unter Verwendung geeigneter Analysemöglichkeiten statt. Der Bohr- und Probenahmefortschritt wird über verschiedene spektroskopische und sensorische Verfahren begleitend überwacht. Zukünftig soll das System abstandsfähig auf Entschärfungsrobotern eingesetzt werden.
In der vorliegenden Arbeit wird ein neuartiges Verfahren zur Echtzeitüberwachung von Laserbohrprozessen vorgestellt. Die Untersuchungen werden an unterschiedlichen Materialien unter Einsatz eines passiv-gütegeschalteten Nd:YAG Lasers durchgeführt. Prozessbegleitend findet eine Aufzeichnung der akustischen Emissionen mit anschließender Analyse durch schnelle Fourier-Transformation statt. Hierdurch lassen sich der Durchbruch beim Bohren durch ein Material sowie der Materialübergang mehrschichtiger Systeme detektieren. Die akustischen Messungen werden durchAuswertung der Pulsfolge des Lasers mittels einer Fotodiode gestützt. Hierbei zeigt sich eine gute Übereinstimmung der im akustischen Spektrum dominanten Frequenz mit der jeweils im Laserburstauftretenden Pulsfrequenz. Das vorgestellte Verfahren ermöglicht eine Echtzeitüberwachung beim Laserbohren mittels kostengünstiger und einfacher Hardware. Zudem zeichnet es sich im Gegensatz zu bestehenden Verfahren durch eine hohe Robustheit gegen äußere Störeinflüsse aus, da eine frequenzbasierte Auswertung stattfindet.
Mobiles Laser-Schneidsystem zur Unterstützung der USBV-Entschärfung und Beweissicherung (mobiLaS)
(2022)
Unkonventionelle Spreng- und Brandvorrichtungen sind Bedrohungen in den weltweiten Konfliktherden und werden bei terroristischen Aktivitäten verwendet. Der Schutz von Menschen und Material erfordert daher effektive Gegenmaßnahmen. Dazu gehört auch die Anforderung an Sicherheitskräfte oder militärisches Personal, unbekannte Substanzfunde mit geringem zeitlichem und logistischem Aufwand vor Ort als gefährdend oder unkritisch einzustufen. Um Explosivstoffe von nicht-explosiven Materialien zu unterscheiden, kann die bei Explosivstoffen initiierbare, stark exotherme Reaktion genutzt werden. Diese resultiert in Strahlungsemissionen sowie in lokaler Druck- und Temperaturerhöhung. Die Messung dieser Reaktionseffekte und die Anforderung an eine mobile, einfach zu bedienende und robuste Analytik werden durch ein System ermöglicht, das Proben im einstelligen mg-Bereich durch schnelles Erhitzen auf mikrostrukturierten Heizern zum chemischen Umsatz anregt. Die emittierte Strahlung wird mit Photodioden im Bereich des sichtbaren und nah-infraroten Lichts aufgenommen, ein Sensor registriert die Druckerhöhung in einer geschlossenen Versuchskammer. In einem zweiten Aufbau werden die gasförmigen Reaktionsprodukte über ein Sensorarray von vier kommerziellen Gassensoren geleitet und die Signalantworten der Halbleitergassensoren mittels Hauptkomponentenanalyse ausgewertet. Die Ergebnisse zeigen, dass die schnelle thermische Aktivierung für die untersuchten primären Explosivstoffe, Treibladungspulver, sowie Trinitrotoluol (TNT) reproduzierbar erfolgt. Nicht-Explosivstoffe werden dabei im untersuchten Umfang sicher als unkritisch erkannt. Die Auswertung der Gassensorsignale liefert eine Unterscheidung von Nitrat- und Peroxid-basierten Sprengstoffen sowie von nicht-explosiven Substanzen.
Bisher ist nicht bekannt, in welchem Ausmaß Fremd- oder Störgerüche dazu geeignet sind, die allgemeine Leistungsfähigkeit eines Sprengstoffspürhundes einzuschränken oder sogar die Detektion eines Sprengkörpers zu verhindern. Ziel ist es zu untersuchen, inwieweit sich durch den gezielten Einsatz von Störsubstanzen die Sprengstoffdetektionsfähigkeit von Spürhunden beeinflussen lässt. Mit Detektionsfähigkeit ist hier sowohl die Wahrscheinlichkeit einer richtigen Detektion von Sprengstoffen in Gegenwart von starken Fremdgerüchen, als auch die ebenfalls zu erwartende Verringerung der Einsatzdauer (vorzeitige Erschöpfung) gemeint.
Die vorliegende Erfindung betrifft ein Analysesystem und ein bibliotheksunabhängiges Analyseverfahren zum qualitativen Nachweis und zur Klassifizierung energetischer Materialien, insbesondere zum Nachweis von Explosiv- und Sprengstoffen sowie für komplexe Stoffzusammensetzungen, welche in IEDS (Improvised Explosive Devices) Verwendung finden.
Als rohstoffarme und exportorientierte Wirtschaftsnation ist die Bundesrepublik in ho- hem Maß auf die Sicherung und Sicherheit der Logistikketten im grenzüberschreiten- den Verkehr angewiesen. Angesichts der komplexen Transportstrukturen bei grenz- überschreitenden Transporten kommt den eingesetzten Kontroll- und Prüfverfahren besondere Bedeutung zu: Einerseits müssen Kostenbelastungen, Unterbrechungen und Verzögerungen in der Transportkette minimiert, andererseits besonders illegale Einfuhren, Transporte und Substanzen unterbunden werden. Von besonderer Bedeu- tung für Verdachts- bzw. Stichprobenkontrollen ist der Einsatz speziell trainierter Spür- hunde. Als besonders leistungsfähige ‚lebende Sensoren‘ sind sie in der Lage, eine Vielzahl von Stoffen zu detektieren. Der Einsatz von Spürhunden unterliegt allerdings engen Grenzen: Hoher Trainingsaufwand, eng begrenzte Einsatzdauer, begrenzte Verfügbarkeit. Die Entwicklung neuer, optimierter Einsatzverfahren für Spürhunde z. B. mit höheren Durchsatzraten und überprüfbarer Verlässlichkeit durch Einbindung technischer Systeme ist daher ein wichtiger Beitrag für die Sicherung und Sicherheit der Logistikketten.
Die Erfindung betrifft eine Filtervorrichtung zur Anreicherung gasförmiger und/oder partikelgebundener Stoffe. Erfindungsgemäß weist Filtervorrichtung eine wenigstens abschnittsweise luftdurchlässige Umhüllung (1, 3) und ein innerhalb der Umhüllung (1, 3) vorgesehenen Adsorbens (2) zur Anreicherung gasförmiger und/oder partikelgebundener Stoffe aus durch die Umhüllung (1, 3) hindurchgetretener Luft auf, zur nachfolgenden Überprüfung mittels eines lebenden olfaktorischen Detektors und/oder eines thermodesorptionsgekoppelten Analysegeräts auf Geruchsstoffe und/oder Zielanalyten, wobei ein Teil der Umhüllung (1, 3) einen in das Adsorbens (2) hineinführend, an nur einer Seite offenen Kanal (7) ausbildet, an dem offenen Ende des Kanals (7) eine Anschlusseinrichtung (8) zum Anschluss an ein Ansaugsystem angeordnet ist und die Umhüllung (1, 3) und das Adsorbens an Luft bis wenigstens 400 °C thermostabil sind. Auf diese Weise wird eine einfache und verlässliche Möglichkeit bereitgestellt, mit einer gemeinsamen Filtervorrichtung (9) sowohl eine Überprüfung mittels eines lebenden olfaktorischen Detektors sowie nachfolgend eine Überprüfung mittels eines thermodesorptionsgekoppelten Analysegeräts auf Geruchsstoffe und/oder Zielanalyten durchführen zu können.
A precise characterization of substances is essential for the safe handling of explosives. One parameter regularly characterized is the impact sensitivity. This is typically determined using a drop hammer. However, the results can vary depending on the test method and even the operator, and it is not possible to distinguish the type of decomposition such as detonation and deflagration. This study monitors the reaction progress by constructing a drop hammer to measure the decomposition reaction of four different primary explosives (tetrazene, silver azide, lead azide, lead styphnate) in order to determine the reproducibility of this method. Additionally, further possible evaluation methods are explored to improve on the current binary statistical analysis. To determine whether classification was possible based on extracted features, the responses of equipped sensor arrays, which measure and monitor the reactions, were studied and evaluated. Features were extracted from this data and were evaluated using multivariate methods such as principal component analysis (PCA) and linear discriminant analysis (LDA). The results indicate that although the measurements show substance specific trends, they also show a large scatter for each substance. By reducing the dimensions of the extracted features, different sample clusters can be represented and the calculated loadings allow significant parameters to be determined for classification. The results also suggest that differentiation of different reaction mechanisms is feasible. Testing of the regressor function shows reliable results considering the comparatively small amount of data.
The identification of energetic materials in containments is an important challenge for analytical methods in the field of safety and security. Opening a package without knowledge of its contents and the resulting hazards is highly involved with risks and should be avoided whenever possible. Therefore, preferable methods work non-destructive with minimal interaction and are capable of identifying target substances in a containment quickly and reliably. Most spectroscopic methods find their limits, if the target substance is shielded by a covering material. To solve this problem, a combined laser drilling method with subsequent identification of the target substance by means of Raman spectroscopic measurements through microscopic bore holes of the covering material is presented. A pulsed laser beam is used for both the drilling process and as an excitation source for Raman measurements in the same optical setup. Results show the ability of this new method to gain high-quality spectra even when performed through microscopic small bore channels. With the laser parameters chosen right, the method can even be performed on highly sensitive explosives like triacetone triperoxide (TATP). Another advantageous effect arises in an observed reduction in unwanted fluorescence signal in the spectral data, resulting from the confocal-like measurement setup with the bore hole acting as aperture.