Refine
H-BRS Bibliography
- yes (9)
Departments, institutes and facilities
Document Type
- Conference Object (7)
- Article (1)
- Part of a Book (1)
Language
- English (9)
Keywords
- Chaotic Transceiver (1)
- FM Modulation (1)
- On-Off Keying (1)
- cognitive radio (1)
- cooperative sensing (1)
- energy detection (1)
- fusion centre (1)
- spectrum sensing (1)
- throughput maximization (1)
In this paper, the performance evaluation of Frequency Modulated Chaotic On-Off Keying (FM-COOK) in AWGN, Rayleigh and Rician fading channels is given. The simulation results show that an improvement in BER can be gained by incorporating the FM modulation with COOK for SNR values less than 10dB in AWGN case and less than 6dB for Rayleigh and Rician fading channels.
Cost efficient energy monitoring in existing large buildings demands for autonomous indoor sensors with low power consumption, high performance in multipath fading channels and economic implementation. Good performance in multipath fading channels can be achieved with noncoherent chaotic modulation schemes such as chaos on-off keying (COOK) or differential chaos shift keying (DCSK). While COOK stands out in the area of power consumption, DCSK excels when it comes to its performance in noisy and multipath fading channels. This paper evaluates a combination of both schemes for autonomous indoor sensors. The simulation results show 50% less power consumption than DCSK and more than 3dB SNR gain in Rayleigh fading channels at BER=10-3 as compared to COOK, making it a promising candidate for low power transmission in autonomous wireless indoor sensors. We further present an enhanced version of this scheme showing another 1 dB SNR improvement, but at 25% less power consumption than DCSK.