Refine
H-BRS Bibliography
- yes (20)
Departments, institutes and facilities
Document Type
- Conference Object (10)
- Article (6)
- Part of a Book (1)
- Doctoral Thesis (1)
- Patent (1)
- Report (1)
Year of publication
Keywords
- Field sequential imaging (1)
- NIR (1)
- ambulatory monitoring (1)
- camera-based person detection (1)
- decision tree learning (1)
- detection (1)
- displacement measurement (1)
- estimation (1)
- industrial robots (1)
- light curtains (1)
The FIVIS simulator system addresses the classical visual and acoustical cues as well as vestibular and further physiological cues. Sensory feedback from skin, muscles, and joints are integrated within this virtual reality visualization environment. By doing this it allows for simulating otherwise dangerous traffic situations in a controlled laboratory environment. The system has been successfully applied for road safety education applications of school children. In further research studies it is applied to perform multimedia perception experiments. It has been shown, that visual cues dominate by far the perception of visual depth in the majority of applications but the quality of depth perception might depend on the availability of other sensory information. This however, needs to be investigated in more detail in the future.
Microcontroller-based sensor systems offer great opportunities for the implementation of safety features for potentially dangerous machinery. However, in general they are difficult to assess with regard to their reliability and failure rate. This paper describes the safety assessment of hardware and software of a new and innovative sensor system. The hardware is assessed by standardized methods according to norm EN ISO 13849-1, while the use of model checking is presented as an approach to solve the problem of validating the software.
In this paper, we introduce an optical sensor system, which is integrated into an industrial push-button. The sensor allows to classify the type of material that is in contact with the button when pressed into different material categories on the basis of the material's so called "spectral signature". An approach for a safety sensor system at circular table saws on the same base has been introduced previously on SIAS-2007. This contactless working sensor is able to distinguish reliably between skin, textiles, leather and various other kinds of materials. A typical application for this intelligent push-button is the use at possibly dangerous machines, whose operating instructions include either the prohibition or the obligation to wear gloves during the work at the machine. An exemple of machines at which no gloves are allowed are pillar drilling machines, because of the risk of getting caught in the drill chuck and being turned in by the machine. In many cases this causes very serious hand injuries. Depending on the application needs, the sensor system integrated into the push-button can be configured flexibly by software to prevent the operator from accidentally starting a machine with or without gloves, which can decrease the risk of severe accidents significantly. Especially two-hand controls are incentive to manipulation for easier handling. By equipping both push-buttons of a two-hand control with material classification properties, the user is forced to operate the controls with his bare fingers. That limitation disallows the manipulation of a two-hand control by a simple rodding device.
In the fermentation process sugars are transformed into lactic acid. pH meters have traditionally been used for fermentation process monitoring based on acidity. More recently, near infrared (NIR) spectroscopy has proven to provide an accurate and non-invasive method to detect when the transformation of sugars into lactic acid is finished. The fermentation process when sugars are transformed into lactic acid. This research proposes the use of simplified NIR spectroscopy using multispectral optical sensors as a simpler and less expensive measure to end the fermentation process. The NIR spectrum of milk and yogurt is compared to find and extract features that can be used to design a simple sensor to monitor the yogurt fermentation process. Multispectral images in four selected wavebands within the NIR spectrum are captured and show different spectral remission characteristics for milk, yogurt and water, which support the selection of these wavebands for milk and yogurt classification.
The device (10) has a handrail (18) provided with an optical contactless monitoring device formed as an active sensor system, where the monitoring device is arranged in a region of a guide (14) of the handrail at a front base (16) of an escalator (12) or a moving pavement. The monitoring device has two transmission paths (28, 30) with wavelength bands that are different from each other, where one of the paths includes the handrail. Ratio or difference between signals of the paths is used for recognizing foreign bodies e.g. hands of adults and children.
Persons entering the working range of industrial robots are exposed to a high risk of collision with moving parts of the system, potentially causing severe injuries. Conventional systems, which restrict the access to this area, range from walls and fences to light barriers and other vision based protective devices (VBPD). None of these systems allow to distinguish between humans and workpieces in a safe and reliable manner. In this work, a new approach is investigated, which uses an active near-infrared (NIR) camera system with advanced capabilities of skin detection to distinguish humans from workpieces based on characteristic spectral signatures. This approach allows to implement more intelligent muting processes and at the same time increases the safety of persons working close to the robots. The conceptual integration of such a camera system into a VBPD and the enhancement of person detection methods through skin detection are described and evaluated in this paper. Based upon this work, next steps could be the development of multimodal sensor systems to safeguard working ranges of collaborating robots using the described camera system.
The proper use of protective hoods on panel saws should reliably prevent severe injuries from (hand) contact with the blade or material kickbacks. It also should minimize long-term lung damages from fine-particle pollution. To achieve both purposes the hood must be adjusted properly by the operator for each workpiece to fit its height. After a work process is finished, the hood must be lowered down completely to the bench. Unfortunately, in practice the protective hood is fixed at a high position for most of the work time and herein loses its safety features. A system for an automatic height adjustment of the hood would increase comfort and safety. If the system can distinguish between workpieces and skin reliably, it furthermore will reduce occupational hazards for panel saw users. A functional demonstrator of such a system has been designed and implemented to show the feasibility of this approach. A specific optical sensor system is used to observe a point on the extended cut axis in front of the blade. The sensor determines the surface material reliably and measures the distance to the workpiece surface simultaneously. If the distance changes because of a workpiece fed to the machine, the control unit will set the motor-adjusted hood to the correct height. If the sensor detects skin, the hood will not be moved. In addition a camera observes the area under the hood. If there are no workpieces or offcuts left under the hood, it will be lowered back to the default position.
The detection of human skin in images is a very desirable feature for applications such as biometric face recognition, which is becoming more frequently used for, e.g., automated border or access control. However, distinguishing real skin from other materials based on imagery captured in the visual spectrum alone and in spite of varying skin types and lighting conditions can be dicult and unreliable. Therefore, spoofing attacks with facial disguises or masks are still a serious problem for state of the art face recognition algorithms. This dissertation presents a novel approach for reliable skin detection based on spectral remission properties in the short-wave infrared (SWIR) spectrum and proposes a cross-modal method that enhances existing solutions for face verification to ensure the authenticity of a face even in the presence of partial disguises or masks. Furthermore, it presents a reference design and the necessary building blocks for an active multispectral camera system that implements this approach, as well as an in-depth evaluation. The system acquires four-band multispectral images within T = 50ms. Using a machine-learning-based classifier, it achieves unprecedented skin detection accuracy, even in the presence of skin-like materials used for spoofing attacks. Paired with a commercial face recognition software, the system successfully rejected all evaluated attempts to counterfeit a foreign face.
This paper presents recent research on an active multispectral scanning sensor capable of classifying an object's surface material in order to distinguish between different kinds of materials and human skin. The sensor itself has already been presented in previous work and can be used in conjunction with safeguarding equipment at manually-fed machines or robot workplaces, for example. This work shows how an extended sensor system with advanced material classifiers can be used to provide additional value by distinguishing different materials of work pieces in order to suggest different tools or parameters for the machine (e.g. the use of a different saw blade or rotation speed at table saws). Additionally, a first implementation and evaluation of an active multispectral camera system addressing new safety applications is described. Both approaches intend to increase the productivity and the user's acceptance of the sensor technology.
At previous SIAS conferences, we presented a novel opto-electronic safety sensor system for skin detection at circular saws jointly developed with the Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA). This work now presents the development results of our consecutive research on a prototype of a sensor system for more general production machine applications including robot workplaces. The system uses offthe shelf LEDs and photodiodes in combination with dedicated optics and a microcontroller system to implement a so-called spectral light curtain.
Design of an Active Multispectral SWIR Camera System for Skin Detection and Face Verification
(2016)
Biometric face recognition is becoming more frequently used in different application scenarios. However, spoofing attacks with facial disguises are still a serious problem for state of the art face recognition algorithms. This work proposes an approach to face verification based on spectral signatures of material surfaces in the short wave infrared (SWIR) range. They allow distinguishing authentic human skin reliably from other materials, independent of the skin type. We present the design of an active SWIR imaging system that acquires four-band multispectral image stacks in real-time. The system uses pulsed small band illumination, which allows for fast image acquisition and high spectral resolution and renders it widely independent of ambient light. After extracting the spectral signatures from the acquired images, detected faces can be verified or rejected by classifying the material as "skin" or "no-skin". The approach is extensively evaluated with respect to both acquisition and classification performance. In addition, we present a database containing RGB and multispectral SWIR face images, as well as spectrometer measurements of a variety of subjects, which is used to evaluate our approach and will be made available to the research community by the time this work is published.