Refine
Departments, institutes and facilities
Document Type
- Conference Object (6)
- Article (5)
Language
- English (11)
Has Fulltext
- no (11)
Keywords
- Fourier transforms (2)
- Receivers (2)
- Spectrometers (2)
- instrumentation: spectrographs (2)
- techniques: spectroscopic (2)
- Computer hardware (1)
- Equipment and services (1)
- Galaxy: centre (1)
- Heterodyning (1)
- ISM: Individual: Alphanumeric: 3C 58 (1)
Simultaneous multifrequency radio observations of the Galactic Centre magnetar SGR J1745-2900
(2015)
Earth’s nearest candidate supermassive black hole lies at the centre of the Milky Way1. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment2, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed3. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas4, expel matter through relativistic jets5 and lead to synchrotron emission such as that previously observed6, 7, 8. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre9, 10, 11, 12 and show that the pulsar’s unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission—from radio to X-ray wavelengths—from the black hole.
To make best use of the exceptional good weather conditions at Chajnantor we developed CHAMP+, a two time seven pixel dual-color heterodyne array for operation in the 350 and 450 µm atmospheric windows. CHAMP+ uses state-of-the-art SIS-mixers provided by our collaborators at SRON. To maximize its performance, optical single sideband filter are implemented for each of the two subarrays, and most of the optics is operated cold (20K) to minimize noise contributions. The instrument can be operated remotely, under full computer control of all components. The autocorrelator backend, currently in operation with 2 × 1GHz of bandwidth for each of the 14 heterodyne channels, will be upgraded by a new technologies FFT spectrometer array in mid 2008. CHAMP+ has been commissioned successfully in late 2007. We will review the performance of the instrument "in the field," and present its characteristics as measured on-sky.
We review the development of our digital broadband Fast Fourier Transform Spectrometers (FFTS). In just a few years, FFTS back-ends - optimized for a wide range of radio astronomical applications - have become a new standard for heterodyne receivers, particularly in the mm and sub-mm wavelength range. They offer high instantaneous bandwidths with many thousands spectral channels on a small electronic board (100 x 160 mm). Our FFT spectrometer make use of the latest versions of GHz analog-to-digital converters (ADC) and the most complex field programmable gate array (FPGA) chips commercially available today. These state-of-the-art chips have made possible to build digital spectrometers with instantaneous bandwidths up to 1.8 GHz and 8192 spectral channels.
We present our second generation of broadband Fast Fourier Transform Spectrometer (FFTS), optimized for a wide range of radio astronomical applications. The new digitizer and analyzer boards make use of the latest versions of GHz analogto-digital converters and the most complex field programmable gate array chips commercially available today. These state-ofthe-art chips have made possible to build digital spectrometers with instantaneous bandwidths up to 1.8 GHz and 8192 spectral channels.
Context.We present the technology and first scientific results of a new generation of very flexible and sensitive spectrometers, well-suited for the needs of spectral-line radio and (sub)millimeter astronomy: Fast Fourier Transform Spectrometers (FFTS), which are in operation at the Atacama Pathfinder EXperiment (APEX) telescope.
Aims. The FFTS for APEX is a novel high-resolution 2 x 1 GHz bandwidth digital spectrometer backend. Due to its high frequency resolution, and the demonstrated capability of operating at high altitude, the FFTS became the facility spectrometer for spectral line observations at APEX.
Methods. The FFTS is based on one of the currently most powerful digitizer/analyzer boards available from Acqiris, Switzerland. The board incorporates two 1 Gsamples/s analog-to-digital converters (ADCs) with 8-bit resolution which feed an on-board complex field programmable gate array (FPGA) chip. The enormous processing power by today's FPGAs allow for a complete real-time FFT signal processing pipeline to decompose a 1 GHz band into 16 384 spectral channels in just one chip.
Results. Since May 2005 an MPIfR FFTS has been extensively used in all regular spectroscopic science observations. The performance at APEX was demonstrated to be very reliable and as good as measured in the first laboratory tests which finally led to the request to provide a second, facility type FFTS for APEX. The unit was delivered and commissioned in March this year.
Conclusions. Using a commercially available digitizer board, it was possible to develop a complete FFTS in only a few months. Successful observations at APEX demonstrate that this new generation of FPGA-based spectrometers easily matching and superseding the performance of older technology spectrometers and can built up much more easily. Furthermore, the by now available class of new high-speed ADCs and the continuous increase of FPGA processing power makes it very likely that FFTS can be pushed to broader bandwidth and even more spectral channels in the near future.