Refine
H-BRS Bibliography
- yes (17)
Departments, institutes and facilities
Document Type
- Conference Object (12)
- Article (2)
- Preprint (2)
- Report (1)
Year of publication
Language
- English (17)
Keywords
- Affordances (1)
- FOS: Computer and information sciences (1)
- Plan-based robot control (1)
- Reasoning (1)
- Robotics (1)
- Robotics (cs.RO) (1)
- Robotik (1)
- Social intelligence (1)
- execution (1)
- monitoring (1)
This paper presents the b-it-bots RoboCup@Work team and its current hardware and functional architecture for the KUKA youBot robot.We describe the underlying software framework and the developed capabilities required for operating in industrial environments including features such as reliable and precise navigation, flexible manipulation and robust object recognition.
The RoCKIn@Work Challenge
(2014)
This paper presents the b-it-bots RoboCup@Work team and its current hardware and functional architecture for the KUKA youBot robot. We describe the underlying software framework and the developed capabilities required for operating in industrial environments including features such as reliable and precise navigation, flexible manipulation and robust object recognition.
This paper presents the b-it-bots RoboCup@Work team and its current hardware and functional architecture for the KUKA youBot robot. We describe the underlying software framework and the developed capabilities required for operating in industrial environments including features such as reliable and precise navigation, flexible manipulation, robust object recognition and task planning. New developments include an approach to grasp vertical objects, placement of objects by considering the empty space on a workstation, and the process of porting our code to ROS2.
XPERSIF: a software integration framework & architecture for robotic learning by experimentation
(2008)
The integration of independently-developed applications into an efficient system, particularly in a distributed setting, is the core issue addressed in this work. Cooperation between researchers across various field boundaries in order to solve complex problems has become commonplace. Due to the multidisciplinary nature of such efforts, individual applications are developed independent of the integration process. The integration of individual applications into a fully-functioning architecture is a complex and multifaceted task. This thesis extends a component-based architecture, previously developed by the authors, to allow the integration of various software applications which are deployed in a distributed setting. The test bed for the framework is the EU project XPERO, the goal of which is robot learning by experimentation. The task at hand is the integration of the required applications, such as planning of experiments, perception of parametrized features, robot motion control and knowledge-based learning, into a coherent cognitive architecture. This allows a mobile robot to use the methods involved in experimentation in order to learn about its environment. To meet the challenge of developing this architecture within a distributed, heterogeneous environment, the authors specified, defined, developed, implemented and tested a component-based architecture called XPERSIF. The architecture comprises loosely-coupled, autonomous components that offer services through their well-defined interfaces and form a service-oriented architecture. The Ice middleware is used in the communication layer. Its deployment facilitates the necessary refactoring of concepts. One fully specified and detailed use case is the successful integration of the XPERSim simulator which constitutes one of the kernel components of XPERO.The results of this work demonstrate that the proposed architecture is robust and flexible, and can be successfully scaled to allow the complete integration of the necessary applications, thus enabling robot learning by experimentation. The design supports composability, thus allowing components to be grouped together in order to provide an aggregate service. Distributed simulation enabled real time tele-observation of the simulated experiment. Results show that incorporating the XPERSim simulator has substantially enhanced the speed of research and the information flow within the cognitive learning loop.
In this paper, we present XPERSim, a 3D simulator built on top of open source components that enables users to quickly and easily construct an accurate and photo-realistic simulation for robots of arbitrary morphology and their environments. While many existing robot simulators provide a good dynamics simulation, they often lack the high quality visualization that is now possible with general-purpose hardware. XPERSim achieves such visualization by using the Object-Oriented Graphics Rendering Engine 3D (Ogre) engine to render the simulation whose dynamics are calculated using the Open Dynamics Engine (ODE). Through XPERSim’s integration into a component-based software integration framework used for robotic learning by experimentation, XPERSIF, and the use of the scene-oriented nature of the Ogre engine, the simulation is distributed to numerous users that include researchers and robotic components, thus enabling simultaneous, quasi-realtime observation of the multiple-camera simulations.
The goal of this work is to develop an integration framework for a robotic software system which enables robotic learning by experimentation within a distributed and heterogeneous setting. To meet this challenge, the authors specified, defined, developed, implemented and tested a component-based architecture called XPERSIF. The architecture comprises loosely-coupled, autonomous components that offer services through their well-defined interfaces and form a service-oriented architecture. The Ice middleware is used in the communication layer. Additionally, the successful integration of the XPERSim simulator into the system has enabled simultaneous quasi-realtime observation of the simulation by numerous, distributed users.
The RoCKIn@Home Challenge
(2014)
Adapting plans to changes in the environment by finding alternatives and taking advantage of opportunities is a common human behavior. The need for such behavior is often rooted in the uncertainty produced by our incomplete knowledge of the environment. While several existing planning approaches deal with such issues, artificial agents still lack the robustness that humans display in accomplishing their tasks. In this work, we address this brittleness by combining Hierarchical Task Network planning, Description Logics, and the notions of affordances and conceptual similarity. The approach allows a domestic service robot to find ways to get a job done by making substitutions. We show how knowledge is modeled, how the reasoning process is used to create a constrained planning problem, and how the system handles cases where plan generation fails due to missing/unavailable objects. The results of the evaluation for two tasks in a domestic service domain show the viability of the approach in finding and making the appropriate goal transformations.
In this paper we propose an architecture to integrate classical planning and real autonomous mobile robots. We start by providing with a high level description of all necessary components to set the goals, generate plans and execute them on real robots and monitor the outcome of their actions. At the core of our method and to deal with execution issues we code the agent actions with automatas. We prove the flexibility of the system by testing on two different domains: industrial (Basic Transportation Test) and domestic (General Purpose Service Robot) in the context of the international RoboCup competition. Additionally we benchmark the scalability of the planning system in two domains on a set of planning problems with increasing complexity. The proposed framework is open source1 and can be easily extended.
Embodied artificial agents operating in dynamic, real-world environments need architectures that support the special requirements that exist for them. Architectures are not always designed from scratch and the system then implemented all at once, but rather, a step-wise integration of components is often made to increase functionality. Our work aims to increase flexibility and robustness by integrating a task planner into an existing architecture and coupling the planning process with the preexisting execution and the basic monitoring processes. This involved the conversion of monolithic SMACH scenario scripts (state-machine execution scripts) into modular states that can be called dynamically based on the plan that was generated by the planning process. The procedural knowledge encoded in such state machines was used to model the planning domain for two RoboCup@Home scenarios on a Care-O-Bot 3 robot [GRH+08]. This was done for the JSHOP2 [IN03] hierarchical task network (HTN) planner. A component which iterates through a generated plan and calls the appropriate SMACH states [Fie11] was implemented, thus enabling the scenarios. Crucially, individual monitoring actions which enable the robot to monitor the execution of the actions were designed and included, thus providing additional robustness.
Humans exhibit flexible and robust behavior in achieving their goals. We make suitable substitutions for objects, actions, or tools to get the job done. When opportunities that would allow us to reach our goals with less effort arise, we often take advantage of them. Robots are not nearly as robust in handling such situations. Enabling a domestic service robot to find ways to get a job done by making substitutions is the goal of our work. In this paper, we highlight the challenges faced in our approach to combine Hierarchical Task Network planning, Description Logics, and the notions of affordances and conceptual similarity. We present open questions in modeling the necessary knowledge, creating planning problems, and enabling the system to handle cases where plan generation fails due to missing/unavailable objects.