Refine
Departments, institutes and facilities
Document Type
- Article (126)
- Part of a Book (3)
- Preprint (2)
Year of publication
Keywords
- Organic aciduria (5)
- Inborn error of metabolism (4)
- Ketolysis (4)
- organic aciduria (4)
- Ketogenesis (3)
- Ketone body (3)
- Metabolic acidosis (3)
- metabolic acidosis (3)
- 3-hydroxyisobutyrate dehydrogenase (2)
- 3-hydroxyisobutyric aciduria (2)
There is an unmet need for the development and validation of biomarkers and surrogate endpoints for clinical trials in propionic acidemia (PA) and methylmalonic acidemia (MMA). This review examines the pathophysiology and clinical consequences of PA and MMA that could form the basis for potential biomarkers and surrogate endpoints. Changes in primary metabolites such as methylcitric acid (MCA), MCA:citric acid ratio, oxidation of 13C-propionate (exhaled 13CO2), and propionylcarnitine (C3) have demonstrated clinical relevance in patients with PA or MMA. Methylmalonic acid, another primary metabolite, is a potential biomarker, but only in patients with MMA. Other potential biomarkers in patients with either PA and MMA include secondary metabolites, such as ammonium, or the mitochondrial disease marker, fibroblast growth factor 21. Additional research is needed to validate these biomarkers as surrogate endpoints, and to determine whether other metabolites or markers of organ damage could also be useful biomarkers for clinical trials of investigational drug treatments in patients with PA or MMA. This review examines the evidence supporting a variety of possible biomarkers for drug development in propionic and methylmalonic acidemias.
Beta-ketothiolase deficiency, also known as mitochondrial acetoacetyl-CoA thiolase (T2) deficiency, is an autosomal recessive disease caused by mutations in the acetylCoA acetyltransferase 1 (ACAT1) gene. A German T2deficient patient that developed a severe ketoacidotic episode at the age of 11 months, was revealed to be a compound heterozygote of a previously reported null mutation, c.472A>G (p.N158D) and a novel mutation, c.949G>A (p.D317N), in ACAT1. The c.949G>A mutation was suspected to cause aberrant splicing as it is located within an exonic splicing enhancer sequence (c. 947CTGACGC) that is a potential binding site for serine/argininerich splicing factor 1. A mutation in this sequence, c.951C>T, results in exon 10 skipping. A minigene construct was synthesized that included exon 9truncated intron 9exon 10truncated intron 10exon 11, and the splicing of this minigene revealed that the c.949G>A mutant construct caused exon 10 skipping in a proportion of the transcripts. Furthermore, additional substitution of G for C at the first nucleotide of exon 10 (c.941G>C) abolished the effect of the c.949G>A mutation. Transient expression analysis of the c.949G>A mutant cDNA revealed no residual T2 activity in the mutated D317N enzyme. Therefore, c.949G>A (D317N) is a pathogenic missense mutation, and diminishes the effect of an exonic splicing enhancer and causes exon 10 skipping. The present study demonstrates that a missense mutation, or even a synonymous substitution, may disrupt enzyme function by interference with splicing.
Amino acids perform multiple essential physiological roles in humans, and accordingly, their importance to health has been the subject of extensive attention. In this special issue of the Journal of Nutrition and Metabolism, we focus on the various inborn errors of amino acid metabolism, their diagnostic challenges, new treatment approaches, and recent advances in patient monitoring as well as clinical outcomes.
Gene expression and cell growth rely on the intracellular concentration of amino acids, which in metazoans depends on extracellular amino acid availability and transmembrane transport. To investigate the impact of extracellular amino acid concentrations on the expression of a concentrative amino acid transporter, we overexpressed the main kidney proximal tubule luminal neutral amino acid transporter B0AT1-collectrin (SLC6A19-TMEM27) in MDCK cell epithelia. Exogenously expressed proteins co-localized at the luminal membrane and mediated neutral amino acid uptake. However, the transgenes were lost over few cell culture passages. In contrast, the expression of a control transgene remained stable. To test whether this loss was due to inappropriately high amino acid uptake, freshly transduced MDCK cell lines were cultivated either with physiological amounts of amino acids or with the high concentration found in standard cell culture media. Expression of exogenous transporters was unaffected by physiological amino acid concentration in the media. Interestingly, mycoplasma infection resulted in a significant increase in transgene expression and correlated with the rapid metabolism of L-arginine. However, L-arginine metabolites were shown to play no role in transgene expression. In contrast, activation of the GCN2 pathway revealed by an increase in eIF2α phosphorylation may trigger transgene derepression. Taken together, high extracellular amino acid concentration provided by cell culture media appears to inhibit the constitutive expression of concentrative amino acid transporters whereas L-arginine depletion by mycoplasma induces the expression of transgenes possibly via stimulation of the GCN2 pathway.
Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis
(2017)
3-Hydroxy-3-methylglutaryl-coenzyme A lyase (HMGCL, HMGCL) deficiency is a rare inborn error of ketogenesis. Even if the ketogenic enzyme is fully disrupted, an elevated signal for the ketone body acetoacetic acid is a frequent observation in the analysis of urinary organic acids, at least if derivatization is performed by methylation. We provide an explanation for this phenomenon and trace it back to degradation of the derivatized 3-hydroxy-3-methylglutaric acid and high temperature of the injector of the gas chromatograph.
Amaç: Keton cisim oluşumu (ketogenez) bozuklukları; mitokondriyel 3-hidroksi-3metil glutaril CoA sentaz (Mhs) ve 3-hidroksi-3-metil glutaril CoA liyaz (HL) enzim eksiklikleri sonucu oluşur. Keton cisim yıkımı (ketoliz) bozuklukları ise suksinil CoA: 3 oksoasit CoA transferaz (SCOT) ve asetoasetil CoA thiolaz-beta ketotiolaz (MAT) enzim eksiklikleri sonucu oluşmaktadır. Keton metabolizma bozukluğu tanısıyla izlenen hastaların klinik ve laboratuvar bulguları ile değerlendirilmesi amaçlandı.
Yöntem: Keton metabolizması bozukluğu tanısıyla izlenen hasta verileri retrospektif olarak incelendi.
Bulgular: Dört hastada HL eksikliği, 3 hastada MAT eksikliği ve 2 hastada SCOT eksikliği tanısı mevcuttu. Hastaların ortanca yaşı 5 yıl (6 ay-15,5 yıl), ilk metabolik dekompanzasyon atak yaşı ortalama 7,7 ay (22 gün-19 ay) idi. MAT eksikliği olan bir hasta, kardeş taraması ile asemptomatik dönemde tanı aldı. İki hastada spastik tetraparezi gibi ağır nörolojik defisit gelişti. Dekompanzasyon ataklarının beslenememe, kusma ve gastroenterit gibi infeksiyon sonrası geliştiği görüldü.
Sonuç: Açıklanamayan metabolik asidoz atakları durumunda keton metabolizma bozuklukları akılda tutulmalıdır. Akut dekompanzasyon değişik yaşlarda ortaya çıkabilir, klinik şiddeti değişken olabilir. Erken tanı ve uygun tedavi mortalite ve morbidite açısından çok önemlidir.
Background 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMGCLD) is an autosomal recessive disorder of ketogenesis and leucine degradation due to mutations in HMGCL .
Method We performed a systematic literature search to identify all published cases. 211 patients of whom relevant clinical data were available were included in this analysis. Clinical course, biochemical findings and mutation data are highlighted and discussed. An overview on all published HMGCL variants is provided.
Results More than 95% of patients presented with acute metabolic decompensation. Most patients manifested within the first year of life, 42.4% already neonatally. Very few individuals remained asymptomatic. The neurologic long-term outcome was favorable with 62.6% of patients showing normal development.
Conclusion This comprehensive data analysis provides a systematic overview on all published cases with HMGCLD including a list of all known HMGCL mutations.
2-methylacetoacetyl-coenzyme A thiolase (beta-ketothiolase) deficiency: one disease - two pathways
(2019)
Background: 2-methylacetoacetyl-coenzyme A thiolase deficiency (MATD; deficiency of mitochondrial acetoacetyl-coenzyme A thiolase T2/ “beta-ketothiolase”) is an autosomal recessive disorder of ketone body utilization and isoleucine degradation due to mutations in ACAT1.
Methods: We performed a systematic literature search for all available clinical descriptions of patients with MATD. 244 patients were identified and included in this analysis. Clinical course and biochemical data are presented and discussed.
Results: For 89.6 % of patients at least one acute metabolic decompensation was reported. Age at first symptoms ranged from 2 days to 8 years (median 12 months). More than 82% of patients presented in the first two years of life, while manifestation in the neonatal period was the exception (3.4%). 77.0% (157 of 204 patients) of patients showed normal psychomotor development without neurologic abnormalities.
Conclusion: This comprehensive data analysis provides a systematic overview on all cases with MATD identified in the literature. It demonstrates that MATD is a rather benign disorder with often favourable outcome, when compared with many other organic acidurias.
Changes in plasma amino acid concentrations with increasing age in patients with propionic acidemia
(2010)
Dihydropyrimidine dehydrogenase (DPD) deficiency is an infrequently described autosomal recessive disorder of the pyrimidine degradation pathway and can lead to mental and motor retardation and convulsions. DPD deficiency is also known to cause a potentially lethal toxicity following administration of the antineoplastic agent 5-fluorouracil. In an ongoing study of 72 DPD deficient patients, we analysed the molecular background of 5 patients in more detail in whom initial sequence analysis did not reveal pathogenic mutations. In three patients, a 13.8 kb deletion of exon 12 was found and in one patient a 122 kb deletion of exon 14–16 of DPYD. In the fifth patient, a c.299_302delTCAT mutation in exon 4 was found and also loss of heterozygosity of the entire DPD gene. Further analysis demonstrated a de novo deletion of approximately 14 Mb of chromosome 1p13.3–1p21.3, which includes DPYD. Haploinsufficiency of NTNG1, LPPR4, GPSM2, COL11A1 and VAV3 might have contributed to the severe psychomotor retardation and unusual craniofacial features in this patient. Our study showed for the first time the presence of genomic deletions affecting DPYD in 7% (5/72) of all DPD deficient patients. Therefore, screening of DPD deficient patients for genomic deletions should be considered.
Screening in clinical trials
(2002)