Refine
Departments, institutes and facilities
Document Type
- Conference Object (5)
- Article (2)
Language
- English (7)
Keywords
- reliability (2)
- Equipment and services (1)
- Fourier transforms (1)
- Heterodyning (1)
- MEMS glass frit (1)
- Optics (1)
- Oscillators (1)
- Receivers (1)
- SOFIA (GREAT) (1)
- Sensors (1)
GREAT, the German REceiver for Astronomy at THz frequencies, has successfully passed its pre-shipment acceptance review conducted by DLR and NASA on December 4-5, 2008. Shipment to DAOF/Palmdale, home of the SOFIA observatory, has been released; airworthiness was stated by NASA. Since, due to schedule slips on the SOFIA project level, first science flights with GREAT were delayed to mid 2010. Here we present GREAT’s short science flight configuration: two heterodyne channels will be operated simultaneously in the frequency ranges of 1.25-1.50 and 1.82-1.91 THz, respectively, driven by solid-state type local oscillator systems, and supported by a wide suite of back-ends. The receiver was extensively tested for about 6 month in the MPIfR labs, showing performances compliant with specifications. This short science configuration will be available to the interested SOFIA user communities in collaboration with the GREAT PI team during SOFIA’s upcoming Basic Science flights.
We present a new multi-pixel high resolution (R ≳ 107) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receiver uses 2 × 7-pixel subarrays in orthogonal polarization, each in an hexagonal array around a central pixel. We present the first results for this new instrument after commissioning campaigns in May and December 2015 and after science observations performed in May 2016. The receiver is designed to ultimately cover the full 1.8−2.5 THz frequency range but in its first implementation, the observing range was limited to observations of the [CII] line at 1.9 THz in 2015 and extended to 1.83−2.07 THz in 2016. The instrument sensitivities are state-of-the-art and the first scientific observations performed shortly after the commissioning confirm that the time efficiency for large scale imaging is improved by more than an order of magnitude as compared to single pixel receivers. An example of large scale mapping around the Horsehead Nebula is presented here illustrating this improvement. The array has been added to SOFIA’s instrument suite already for ongoing observing cycle 4.
We present the performance of the upGREAT heterodyne array receivers on the SOFIA telescope after several years of operations. This instrument is a multi-pixel high resolution (R≳107) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receivers use 7-pixel subarrays configured in a hexagonal layout around a central pixel. The low frequency array receiver (LFA) has 2×7 pixels (dual polarization), and presently covers the 1.83–2.07THz frequency range, which allows to observe the [CII] and [OI] lines at 158μm and 145μm wavelengths. The high frequency array (HFA) covers the [OI] line at 63μm and is equipped with one polarization at the moment (7 pixels, which can be upgraded in the near future with a second polarization array). The 4.7THz array has successfully flown using two separate quantum-cascade laser local oscillators from two different groups. NASA completed the development, integration and testing of a dual-channel closed-cycle cryocooler system, with two independently operable He compressors, aboard SOFIA in early 2017 and since then, both arrays can be operated in parallel using a frequency separating dichroic mirror. This configuration is now the prime GREAT configuration and has been added to SOFIA’s instrument suite since observing cycle 6.