Refine
H-BRS Bibliography
- yes (10)
Departments, institutes and facilities
Document Type
- Article (5)
- Conference Object (3)
- Doctoral Thesis (1)
- Preprint (1)
Keywords
- Miscanthus x giganteus (2)
- Thermal conductivity (2)
- Compressive strength (1)
- Dämmstoffe (1)
- Fiber reinforcement (1)
- Flugasche (1)
- Foaming (1)
- Geopolymer (1)
- Geopolymer foams (1)
- Geopolymerschäume (1)
Due to increased emissions of palladium nanoparticles in recent years, it is important to develop analytical techniques to characterize these particles. The synthesis of defined and stable particles plays a key role in this process, as there are not many materials commercially available yet which could act as reference materials. Polyvinylpyrrolidone- (PVP-) stabilized palladium nanoparticles were synthesized through the reduction of palladium chloride by tetraethylene glycol (TEG) in the presence of KOH. Four different methods were used for particle size analysis of the palladium nanoparticles. Palladium suspensions were analyzed by scanning electron microscopy (SEM), small angle X-ray scattering (SAXS), single-particle ICP-MS (SP-ICP-MS), and X-ray diffraction (XRD). Secondary particles between 30 nm and 130 nm were detected in great compliance with SAXS and SP-ICP-MS. SEM analysis showed that the small particulates tend to form agglomerates.
Die Nachfrage nach nachhaltigen, umweltfreundlichen und CO2-reduzierten Dämmstoffen steigt stetig. Insbesondere im Hinblick auf den fortschreitenden Klimawandel, sind die Reduzierung des CO2-Ausstoßes, die Verringerung des Energieverbrauchs von Gebäuden, sowie die Schonung natürlicher Ressourcen, wichtige Forderungen für den Erhalt der Umwelt. Zu den am häufigsten eingesetzten Wärmedämmstoffen zählen derzeit Polystyren, Polyurethan und Mineralwolle, für deren Herstellung jedoch eine erhebliche Menge an Energie eingesetzt werden muss. Eine sinnvolle Alternative stellen Dämmstoffe auf Basis nachwachsender Rohstoffe dar. Als sehr aussichtsreiche Gruppe von nachwachsenden Rohstoffen gelten mehrjährige, schnellwachsende Low-input Kulturen, wie das aus dem ostasiatischen Raum stammende Großgras Miscanthus. Ziel dieser Arbeit liegt in der Entwicklung und Charakterisierung Miscanthus faserverstärkter Geopolymerschäume für den Einsatz als Dämmstoff. Dazu wurden zunächst die Grundlagen aus Bereichen nachwachsender Rohstoffe, Dämmstoffe, Schaumtechnologie sowie Geopolymeren zusammengetragen. Ein besonderer Schwerpunkt lag dabei auf der Herstellung von naturfaserverstärkten Geopolymerschäumen. Ausgehend von den Grundlagen wurde der Ausgangsstoff Miscanthus hinsichtlich seiner Dämmeigenschaften, wie Wärmeleitfähigkeit und Porenstruktur charakterisiert und im Anschluss durch Kombination mit geschäumten Geopolymeren, Miscanthus faserverstärkte Dämmstoffplatten hergestellt. Mittels statistischer Versuchsplanung wurde im nächsten Schritt der Einfluss verschiedener Faktoren (Fasergehalt, Faserlänge, Aushärtungstemperatur, Menge an Schaumbildner, Gehalt an pyrogener Kieselsäure und spezifische Oberfläche der pyrogenen Kieselsäure) auf die Wärmeleitfähigkeit und Druckfestigkeit der hergestellten Dämmstoffe untersucht. Im Ergebnis konnte dabei ein signifikanter Einfluss des Fasergehalts, der Faserlänge und der Menge an Schaumbildner festgestellt werden. Untersuchungen zur Porosität, mineralogischen Zusammensetzung, Molekülstruktur, sowie Mikrostruktur ergänzen diese Ergebnisse. Abschließend wurde auf Grundlage der statistischen Daten eine optimale Zusammensetzung mit niedriger Wärmeleitfähigkeit und gleichzeitig hoher Druckfestigkeit ermittelt.
The demand for sustainable, environmentally friendly, and low-carbon insulation materials is constantly increasing. Especially considering the progression of climate change, reducing CO2 emissions, reducing the energy consumption of buildings, and conserving natural resources are all important requirements for preserving the environment. The most frequently used thermal insulation materials currently include polystyrene, polyurethane, and mineral wool, but a considerable amount of energy is used in their production. Insulation materials based on renewable raw materials are a sensible alternative. An extremely promising group of renewable raw materials includes multi-year, fast-growing low-input crops, such as the tall grass Miscanthus from East Asia. The aim of this paper is the development and characterization of Miscanthus fiber-reinforced geopolymer foams for use as insulation material. To this end, the basics of renewable raw materials, insulation materials, foam technology and geopolymers were compiled first. Particular attention was paid to the production of natural fiber stabilized geopolymer foams. Starting from the basics, the raw material Miscanthus was characterized with regard to its insulating properties such as thermal conductivity and pore structure, and subsequently Miscanthus fiber-reinforced insulation boards were produced by combining with foamed geopolymers. In the next step, the influence of various factors (fiber content, fiber size, curing temperature, foaming agent content, content of fumed silica and specific surface area of the fumed silica) on the thermal conductivity and compressive strength of the produced insulating materials was investigated by means of statistical experiment planning. As a result, it could be determined that the fiber content, fiber size and foaming agent content had a significant influence. Investigations concerning porosity, mineralogical composition, molecular structure, and microstructure complement these results. Finally, an optimal composition with low thermal conductivity, and at the same time high compressive strength, was determined based on the statistical data.
Design and characterization of geopolymer foams reinforced with Miscanthus x giganteus fibers
(2024)
This paper presents the effects of different amounts of fibers and foaming agent, as well as different fiber sizes, on the mechanical and thermal properties of fly ash-based geopolymer foams reinforced with Miscanthus x giganteus fibers. The mechanical properties of the geopolymer foams were measured through compressive strength, and their thermal properties were characterized by thermal conductivity and X-ray micro-computed tomography. Furthermore, design of experiment (DoE) were used to optimize the thermal conductivity and compressive strength of Miscanthus x giganteus reinforced geopolymer foams. In addition, the microstructure was studied using X-ray diffraction (XRD), Field emission scanning electron microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR). Mixtures with a low thermal conductivity of 0.056 W (m K)−1 and a porosity of 79 vol% achieved a compressive strength of only 0.02 MPa. In comparison, mixtures with a thermal conductivity of 0.087 W (m K)−1 and a porosity of 58 vol% achieved a compressive strength of 0.45 MPa.
New sustainable, environmentally friendly materials for thermal insulation of buildings are necessary to reduce their carbon footprints. In this study, Miscanthus fiber-reinforced geopolymer composites, foamed with sodium dodecyl sulfate (SDS), were developed using fly ash as a geopolymer precursor. The effects of fiber content, fiber size, curing temperature, foaming agent content, fumed silica specific surface area and fumed silica content on thermal conductivity and compressive strength were evaluated using a Plackett-Burman design of experiment. Furthermore, the microstructure of geopolymer composites was investigated using X-ray diffraction (XRD), X-ray micro-computed tomography (μCT) and scanning electron microscopy (SEM). The measured characteristic values were in the following ranges: Thermal conductivity 0.057 W (m K)−1 to 0.127 W (m K)−1, compressive strength 0.007 MPa–0.719 MPa and porosity 49 vol% to 76 vol%. The results reveal an enhancement of thermal conductivity by elevated fiber size and foaming agent content. In contrast, the compressive strength is enhanced by high fiber content. Additionally, SEM images indicate a good interaction between the fibers and the geopolymer matrix, because nearly the whole fiber surface is covered by the geopolymer.
The development of sustainable, environmentally friendly insulation materials with a reduced carbon footprint is attracting increased interest. One alternative to conventional insulation materials are foamed geopolymers. Similar to foamed concrete, the mechanical properties of geopolymer foams can also be improved by using fibers for reinforcement. This paper presents an overview of the latest research findings in the field of fiber-reinforced geopolymer foam concrete with special focus on natural fibers reinforcement. Furthermore, some basic and background information of natural fibers and geopolymer foams are reported. In most of the research, foams are produced either through chemical foaming with hydrogen peroxide or aluminum powder, or through mechanical foaming which includes a foaming agent. However, previous reviews have not sufficiently addresses the fabrication of geopolymer foams by syntactic foams. Finally, recent efforts to reduce the fiber degradation in geopolymer concrete are discussed along with challenges for natural fiber reinforced-geopolymer foam concrete.
Design and characterization of geopolymer foams reinforced with Miscanthus x giganteus fibres
(2024)
This paper presents the results of the optimisation and characterization of Miscanthus fibre reinforced geopolymer foams based on fly ash and represents an important step forward in the development of a sustainable and environmentally friendly insulation material. Miscanthus belongs to a promising group of renewable raw materials with favourable thermal insulation properties. Design of experiment (DoE) were used to optimize the thermal conductivity and compressive strength of Miscanthus x giganteus reinforced geopolymer foams. In addition, the samples was analyzed using X-ray diffraction (XRD), Field emission scanning electron microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR). Mixtures with a low thermal conductivity of 0.056 W (m K)−1 and a porosity of 79 vol% achieved a compressive strength of only 0.02 MPa. In comparison, mixtures with a thermal conductivity of 0.087 W (m K)−1 and a porosity of 58 vol% achieved a compressive strength of 0.45 MPa. Based on the determined parameters especially due to the low compressive strength, an application as cavity insulation or insulation between rafters is possible.