Refine
H-BRS Bibliography
- yes (7)
Departments, institutes and facilities
Document Type
- Article (4)
- Conference Object (1)
- Doctoral Thesis (1)
- Report (1)
Keywords
Durch Dotierung eines nematischen Flüssigkristalles mit einer chiralen Substanz wird eine helikal strukturierte Phase induziert, die in der Lage ist, einfallendes Licht wellenlängenselektiv zu reflektieren. Bei der Reaktion des Dotiermittels mit einem gasförmigen Analyten verändern sich die Ganghöhe dieser Struktur und damit die reflektierte Wellenlänge. Liegt diese im Bereich des sichtbaren Lichts, ist eine Farbänderung mit dem menschlichen Auge zu beobachten. Es ist dabei sinnvoll den Flüssigkristall z.B. in einem Polymer einzukapseln, um ihn vor mechanischen Einflüssen und Umwelteinflüssen zu schützen. Eine Möglichkeit zur Einkapselung ist das koaxiale Elektrospinnen. Vorteile sind unter anderem die Realisierung einer großen Oberfläche und einer sehr geringen Wanddicke der schützenden Schale, die die Diffusion von Gasen durch die Wand hindurch ermöglicht. Um die Funktionsfähigkeit eines solchen Sensors zu testen, wurde ein CO2-sensitiver Flüssigkristall verwendet. Dieser wurde in eine Schale aus Polyvinylpyrrolidon (PVP) versponnen und die Reaktion mit CO2 spektroskopisch analysiert.
In der vorliegenden Arbeit werden die nematischen Flüssigkristallgemische (E7 und E8) zum Zwecke der Gassensorik mit einer reaktiven, optisch aktiven Substanz dotiert. Die Dotierung verursacht die Ausbildung einer chiral-nematischen Phase, die einen eindimensionalen photonischen Kristall mit Reflexionsmaxima im sichtbaren Bereich des elektromagnetischen Spektrums erzeugt. Infolge einer chemischen Reaktion des Dotiermittels mit dem einem Analyten, ändert sich mit seiner chemischen Zusammensetzung auch dessen helical twisting power (HTP). Diese Änderung verursacht eine Verschiebung des reflektierten Wellenlängenbereichs, was als Änderung der farblichen Erscheinung mit dem bloßen Auge wahrgenommen werden kann. In dieser Arbeit wird das koaxiale Elektrospinnen verwendet, um Flüssigkristalle in Polymerfasern von wenigen Mikrometern Durchmesser einzukapseln. Der Vergleich zwischen eingekapseltem und nicht eingekapseltem dotierten Flüssigkristall wird mit einer dafür entwickelten Reaktionskammer UV/VIS-spektroskopisch durchgeführt. Die ablaufenden Reaktionen werden mittels FTIR-Spektroskopie untersucht. Die Fasern und die verwendeten Flüssigkristalle werden lichtmikroskopisch charakterisiert. Es werden zusätzlich Möglichkeiten untersucht die Wasserbeständigkeit der hergestellten Fasern zu verbessern, um ihre Eignung für künftige technische Anwendungen zu steigern. Hierzu wird das triaxiale Elektrospinnen verwendet, um die Fasern mit einer zusätzlichen wasserbeständigen Polymerhülle zu überziehen. Es wird zudem die Möglichkeit untersucht koaxial gesponnene Fasern nachträglich zu vernetzen, um so eine Wasserfestigkeit zu erzielen.
Polymer fibers with liquid crystals (LCs) in the core have potential as autonomous sensors of airborne volatile organic compounds (VOCs), with a high surface-to-volume ratio enabling fast and sensitive response and an attractive non-woven textile form factor. We demonstrate their ability to continuously and quantitatively measure the concentration of toluene, cyclohexane, and isopropanol as representative VOCs, via the impact of each VOC on the LC birefringence. The response is fully reversible and repeatable over several cycles, the response time can be as low as seconds, and high sensitivity is achieved when the operating temperature is near the LC-isotropic transition temperature. We propose that a broad operating temperature range can be realized by combining fibers with different LC mixtures, yielding autonomous VOC sensors suitable for integration in apparel or in furniture that can compete with existing consumer-grade electronic VOC sensors in terms of sensitivity and response speed.
A series of reactive binaphthyl‐diimine‐based dopants is prepared and investigated with respect to their potential for the chiral induction of structural coloration in nematic liquid crystal mixture E7 and the selective photonic sensing of nitrogen dioxide (NO2). Studies of the helical twisting power (HTP) in 4‐cyano‐4′‐pentylbiphenyl (5CB) reveal HTP values as high as 375 µm‐1 and the tremendous impact of structural compatibility and changes of the dihedral binaphthyl angle on the efficiency of the chiral transfer. Detailed investigation of the sensing capabilities of the systems reveals an extraordinarily high selectivity for NO2 and a response to concentrations as low as 100 ppm. The systems show a direct response to the analyte gas leading to a concentration‐dependent shift of the reflectance wavelength of up to several hundred nanometers. Incorporation of copper ions remarkably improves the sensor's properties in terms of sensitivity and selectivity, enabling the tailored tweaking of the system's properties.
Optical gas sensors based on chiral-nematic liquid crystals (N* LCs) forming one-dimensional photonic crystals do not require electrical energy and have a considerable potential to supplement established types of sensors. A chiral-nematic phase with tunable selective reflection is induced in a nematic host LC by adding reactive chiral dopants. The selective chemical reaction between dopant and analyte is capable to vary the pitch length (the lattice constant) of the soft, self-assembled, one-dimensional photonic crystal. The progress of the ongoing chemical reaction can be observed even by naked eye because the color of the samples varies. In this work, we encapsulate the responsive N* LC in microscale polyvinylpyrrolidone (PVP) fibers via coaxial electrospinning. The sensor is, thus, given a solid form and has an improved stability against nonavoidable environmental influences. The reaction behavior of encapsulated and nonencapsulated N* LC toward a gaseous analyte is compared, systematically. Making use of the encapsulation is an important step to improve the applicability.
Hydrogen‐Bonded Cholesteric Liquid Crystals—A Modular Approach Toward Responsive Photonic Materials
(2022)
A supramolecular approach for photonic materials based on hydrogen-bonded cholesteric liquid crystals is presented. The modular toolbox of low-molecular-weight hydrogen-bond donors and acceptors provides a simple route toward liquid crystalline materials with tailor-made thermal and photonic properties. Initial studies reveal broad application potential of the liquid crystalline thin films for chemo- and thermosensing. The chemosensing performance is based on the interruption of the intermolecular forces between the donor and acceptor moieties by interference with halogen-bond donors. Future studies will expand the scope of analytes and sensing in aqueous media. In addition, the implementation of the reported materials in additive manufacturing and printed photonic devices is planned.