Refine
H-BRS Bibliography
- yes (11)
Departments, institutes and facilities
Document Type
- Article (5)
- Conference Object (2)
- Book (monograph, edited volume) (1)
- Part of a Book (1)
- Other (1)
- Report (1)
Keywords
Wo Laborexperimente zu aufwendig, zu teuer, zu langsam oder zu gefährlich oder Stoffeigenschaften gar nicht erst experimentell zugänglich sind, können Computersimulationen von Atomen und Molekülen diese ersetzen oder ergänzen. Sie ermöglichen dadurch Reduktion von Kosten, Entwicklungszeit und Materialeinsatz. Die für diese Simulationen benötigten Molekülmodelle beinhalten zahlreiche Parameter, die der Simulant einstellen oder auswählen muss. Eine passende Parametrierung ist nur bei entsprechenden Kenntnissen über die Auswirkungen der Parameter auf die zu berechnenden Größen und Eigenschaften möglich. Eine Gruppe von Standardparametern in molekularen Simulationen sind die Partialladungen der einzelnen Atome innerhalb eines Moleküls. Die räumliche Ladungsverteilung innerhalb des Moleküls wird durch Punktladungen auf den Atomzentren angenähert. Für diese Annäherung existieren diverse Ansätze für verschiedene Molekülklassen und Anwendungen. In diesem Teilprojekt des Promotionsvorhabens wurde systematisch der Einfluss der Wahl des Partialladungssatzes auf potentielle Energien und ausgewählte makroskopische Eigenschaften aus Molekulardynamik-Simulationen evaluiert. Es konnte gezeigt werden, dass insbesondere bei stark polaren Molekülen die Auswahl des geeigneten Partialladungssatzes entscheidenden Einfluss auf die Simulationsergebnisse hat und daher nicht naiv, sondern nur ganz gezielt getroffen werden darf.
Modellbildung und Simulation
(2024)
In diesem Lehrbuch werden die für Ingenieurinnen und Ingenieure relevanten mathematischen Problemklassen eingeführt und dazu vorhandene Standardalgorithmen vorgestellt. Anhand vielfältiger konkreter Beispiele werden Prinzipien der Modellbildung praktisch angewendet, Implementierungen demonstriert und Simulationsergebnisse dargestellt. Dafür werden sowohl der Industriestandard MATLAB wie auch die recht junge und schnell wachsende Programmiersprache Julia verwendet. Mit Hilfe beider Implementierungen kann der oder die Leser:in sehr einfach die Gemeinsamkeiten und Unterschiede erkennen und ist für einen Umstieg vom kommerziellen Produkt MATLAB auf die freie Sprache Julia oder umgekehrt gut vorbereitet.
Energy Profiles of the Ring Puckering of Cyclopentane, Methylcyclopentane and Ethylcyclopentane
(2019)
This study investigates the initial stage of the thermo-mechanical crystallization behavior for uni- and biaxially stretched polyethylene. The models are based on a mesoscale molecular dynamics approach. We take constraints that occur in real-life polymer processing into account, especially with respect to the blowing stage of the extrusion blow-molding process. For this purpose, we deform our systems using a wide range of stretching levels before they are quenched. We discuss the effects of the stretching procedures on the micro-mechanical state of the systems, characterized by entanglement behavior and nematic ordering of chain segments. For the cooling stage, we use two different approaches which allow for free or hindered shrinkage, respectively. During cooling, crystallization kinetics are monitored: We precisely evaluate how the interplay of chain length, temperature, local entanglements and orientation of chain segments influence crystallization behavior. Our models reveal that the main stretching direction dominates microscopic states of the different systems. We are able to show that crystallization mainly depends on the (dis-)entanglement behavior. Nematic ordering plays a secondary role.
In this study, we investigate the thermo-mechanical relaxation and crystallization behavior of polyethylene using mesoscale molecular dynamics simulations. Our models specifically mimic constraints that occur in real-life polymer processing: After strong uniaxial stretching of the melt, we quench and release the polymer chains at different loading conditions. These conditions allow for free or hindered shrinkage, respectively. We present the shrinkage and swelling behavior as well as the crystallization kinetics over up to 600 ns simulation time. We are able to precisely evaluate how the interplay of chain length, temperature, local entanglements and orientation of chain segments influences crystallization and relaxation behavior. From our models, we determine the temperature dependent crystallization rate of polyethylene, including crystallization onset temperature.