Refine
H-BRS Bibliography
- yes (7)
Departments, institutes and facilities
Document Type
Language
- English (7)
Has Fulltext
- no (7)
Keywords
General Chair Message
(2018)
Interactive rendering of complex models has many applications in the Virtual Reality Continuum. The oil&gas industry uses interactive visualizations of huge seismic data sets to evaluate and plan drilling operations. The automotive industry evaluates designs based on very detailed models. Unfortunately, many of these very complex geometric models cannot be displayed with interactive frame rates on graphics workstations. This is due to the limited scalability of their graphics performance. Recently there is a trend to use networked standard PCs to solve this problem. Care must be taken however, because of nonexistent shared memory with clustered PCs. All data and commands have to be sent across the network. It turns out that the removal of the network bottleneck is a challenging problem to solve in this context.In this article we present some approaches for network aware parallel rendering on commodity hardware. These strategies are technological as well as algorithmic solutions.
This paper describes FGPA-based image combining for parallel graphics systems. The goal of our current work is to reduce network traffic and latency for increasing performance in parallel visualization systems. Initial data distribution is based on a common ethernet network whereas image combining and returning differs to traditional parallel rendering methods. Calculated sub-images are grabbed directly from the DVI-Ports for fast image compositing by a FPGA-based combiner.
An electronic display often has to present information from several sources. This contribution reports about an approach, in which programmable logic (FPGA) synchronises and combines several graphics inputs. The application area is computer graphics, especially rendering of large 3D models, which is a computing intensive task. Therefore, complex scenes are generated on parallel systems and merged to give the requested output image. So far, the transportation of intermediate results is often done by a local area network. However, as this can be a limiting factor, the new approach removes this bottleneck and combines the graphic signals with an FPGA.
Human beings spend much time under the influence of artificial lighting. Often, it is beneficial to adapt lighting to the task, as well as the user’s mental and physical constitution and well-being. This formulates new requirements for lighting - human-centric lighting - and drives a need for new light control methods in interior spaces. In this paper we present a holistic system that provides a novel approach to human-centric lighting by introducing simulation methods into interactive light control, to adapt the lighting based on the user's needs. We look at a simulation and evaluation platform that uses interactive stochastic spectral rendering methods to simulate light sources, allowing for their interactive adjustment and adaption.
Clusters of commodity PCs are widely considered as the way to go to improve rendering performance and quality in many real-time rendering applications. We describe the design and implementation of our parallel rendering system for real-time rendering applications. Major design objectives for our system are: usage of commodity hardware for all system components, ease of integration into existing Virtual Environments software, and flexibility in applying different rendering techniques, e.g. using ray tracing to render distinct objects with a particularly high quality.