Refine
H-BRS Bibliography
- yes (6)
Departments, institutes and facilities
Document Type
- Conference Object (4)
- Article (1)
- Preprint (1)
Language
- English (6)
Keywords
- Autism Spectrum Disorder (1)
- RoboCup (1)
- Robot-Assisted Therapy (1)
- Rotating Table Test (1)
- SORT (1)
- Tracking by detection (1)
- YOLO (1)
- assistive robotics (1)
- personalized behaviour model (1)
- reinforcement learning (1)
In robot-assisted therapy for individuals with Autism Spectrum Disorder, the workload of therapists during a therapeutic session is increased if they have to control the robot manually. To allow therapists to focus on the interaction with the person instead, the robot should be more autonomous, namely it should be able to interpret the person's state and continuously adapt its actions according to their behaviour. In this paper, we develop a personalised robot behaviour model that can be used in the robot decision-making process during an activity; this behaviour model is trained with the help of a user model that has been learned from real interaction data. We use Q-learning for this task, such that the results demonstrate that the policy requires about 10,000 iterations to converge. We thus investigate policy transfer for improving the convergence speed; we show that this is a feasible solution, but an inappropriate initial policy can lead to a suboptimal final return.
During robot-assisted therapy, a robot typically needs to be partially or fully controlled by therapists, for instance using a Wizard-of-Oz protocol; this makes therapeutic sessions tedious to conduct, as therapists cannot fully focus on the interaction with the person under therapy. In this work, we develop a learning-based behaviour model that can be used to increase the autonomy of a robot’s decision-making process. We investigate reinforcement learning as a model training technique and compare different reward functions that consider a user’s engagement and activity performance. We also analyse various strategies that aim to make the learning process more tractable, namely i) behaviour model training with a learned user model, ii) policy transfer between user groups, and iii) policy learning from expert feedback. We demonstrate that policy transfer can significantly speed up the policy learning process, although the reward function has an important effect on the actions that a robot can choose. Although the main focus of this paper is the personalisation pipeline itself, we further evaluate the learned behaviour models in a small-scale real-world feasibility study in which six users participated in a sequence learning game with an assistive robot. The results of this study seem to suggest that learning from guidance may result in the most adequate policies in terms of increasing the engagement and game performance of users, but a large-scale user study is needed to verify the validity of that observation.
In Robot-Assisted Therapy for children with Autism Spectrum Disorder, the therapists’ workload is increased due to the necessity of controlling the robot manually. The solution for this problem is to increase the level of autonomy of the system, namely the robot should interpret and adapt to the behaviour of the child under therapy. The problem that we are adressing is to develop a behaviour model that will be used for the robot decision-making process, which will learn how to adequately react to certain child reactions. We propose the use of the reinforcement learning technique for this task, where feedback for learning is obtained from the therapist’s evaluation of a robot’s behaviour.