Refine
H-BRS Bibliography
- yes (2)
Departments, institutes and facilities
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Keywords
- photonic sensing (2)
- chemosensing (1)
- cholesteric liquid crystals (1)
- cholesteric phase (1)
- halogen bonding (1)
- helical twisting power (1)
- hydrogen bonding (1)
- nitrogen dioxide (1)
- supramolecular liquid crystals (1)
- thermosensing (1)
Hydrogen‐Bonded Cholesteric Liquid Crystals—A Modular Approach Toward Responsive Photonic Materials
(2022)
A supramolecular approach for photonic materials based on hydrogen-bonded cholesteric liquid crystals is presented. The modular toolbox of low-molecular-weight hydrogen-bond donors and acceptors provides a simple route toward liquid crystalline materials with tailor-made thermal and photonic properties. Initial studies reveal broad application potential of the liquid crystalline thin films for chemo- and thermosensing. The chemosensing performance is based on the interruption of the intermolecular forces between the donor and acceptor moieties by interference with halogen-bond donors. Future studies will expand the scope of analytes and sensing in aqueous media. In addition, the implementation of the reported materials in additive manufacturing and printed photonic devices is planned.
A series of reactive binaphthyl‐diimine‐based dopants is prepared and investigated with respect to their potential for the chiral induction of structural coloration in nematic liquid crystal mixture E7 and the selective photonic sensing of nitrogen dioxide (NO2). Studies of the helical twisting power (HTP) in 4‐cyano‐4′‐pentylbiphenyl (5CB) reveal HTP values as high as 375 µm‐1 and the tremendous impact of structural compatibility and changes of the dihedral binaphthyl angle on the efficiency of the chiral transfer. Detailed investigation of the sensing capabilities of the systems reveals an extraordinarily high selectivity for NO2 and a response to concentrations as low as 100 ppm. The systems show a direct response to the analyte gas leading to a concentration‐dependent shift of the reflectance wavelength of up to several hundred nanometers. Incorporation of copper ions remarkably improves the sensor's properties in terms of sensitivity and selectivity, enabling the tailored tweaking of the system's properties.