Refine
Departments, institutes and facilities
Document Type
- Article (40)
- Preprint (2)
- Part of a Book (1)
- Dataset (1)
Year of publication
Keywords
- ENaC (12)
- Amiloride (3)
- delta-subunit (3)
- evolution (3)
- Epithelial Na+ channel (2)
- Epithelial sodium channel (2)
- H2S (2)
- Membrane Transport (2)
- Na+/K+-ATPase (2)
- acetylcholine (2)
The development of pulmonary edema can be considered as a combination of alveolar flooding via increased fluid filtration, impaired alveolar-capillary barrier integrity, and disturbed resolution due to decreased alveolar fluid clearance. An important mechanism regulating alveolar fluid clearance is sodium transport across the alveolar epithelium. Transepithelial sodium transport is largely dependent on the activity of sodium channels in alveolar epithelial cells. This paper describes how sodium channels contribute to alveolar fluid clearance under physiological conditions and how deregulation of sodium channel activity might contribute to the pathogenesis of lung diseases associated with pulmonary edema. Furthermore, sodium channels as putative molecular targets for the treatment of pulmonary edema are discussed.
For protection from inhaled pathogens many strategies have evolved in the airways such as mucociliary clearance and cough. We have previously shown that protective respiratory reflexes to locally released bacterial bitter taste substances are most probably initiated by tracheal brush cells (BC). Our single-cell RNA-seq analysis of murine BC revealed high expression levels of cholinergic and bitter taste signaling transcripts (Tas2r108, Gnat3, Trpm5). We directly demonstrate the secretion of acetylcholine (ACh) from BC upon stimulation with the Tas2R agonist denatonium. Inhibition of the taste transduction cascade abolished the increase in [Ca2+](i) in BC and subsequent ACh-release. ACh-release is regulated in an autocrine manner. While the muscarinic ACh-receptors M3R and M1R are activating, M2R is inhibitory. Paracrine effects of ACh released in response to denatonium included increased [Ca2+](i) in ciliated cells. Stimulation by denatonium or with Pseudomonas quinolone signaling molecules led to an increase in mucociliary clearance in explanted tracheae that was Trpm5- and M3R-mediated. We show that ACh-release from BC via the bitter taste cascade leads to immediate paracrine protective responses that can be boosted in an autocrine manner. This mechanism represents the initial step for the activation of innate immune responses against pathogens in the airways.
Carbon Monoxide Rapidly Impairs Alveolar Fluid Clearance by Inhibiting Epithelial Sodium Channels
(2009)
Wesch D, Althaus M, Miranda P, Cruz-Muros I, Fronius M, Gonzalez-Hernandez T, Clauss WG, de la Rosa DA, Giraldez T. Differential N termini in epithelial Na+ channel delta-subunit isoforms modulate channel trafficking to the membrane. Am J Physiol Cell Physiol 302: C868-C879, 2012. First published December 7, 2011; doi: 10.1152/ajpcell.00255.2011.-The epithelial Na+ channel (ENaC) is a heteromultimeric ion channel that plays a key role in Na+ reabsorption across tight epithelia. The canonical ENaC is formed by three analogous subunits, alpha, beta, and gamma. A fourth ENaC subunit, named delta, is expressed in the nervous system of primates, where its role is unknown. The human delta-ENaC gene generates at least two splice isoforms, delta(1) and delta(2), differing in the N-terminal sequence. Neurons in diverse areas of the human and monkey brain differentially express either delta(1) or delta(2), with few cells coexpressing both isoforms, which suggests that they may play specific physiological roles. Here we show that heterologous expression of delta(1) in Xenopus oocytes and HEK293 cells produces higher current levels than delta(2). Patch-clamp experiments showed no differences in single channel current magnitude and open probability between isoforms. Steady-state plasma membrane abundance accounts for the dissimilarity in macroscopic current levels. Differential trafficking between isoforms is independent of beta- and gamma-subunits, PY-motif-mediated endocytosis, or the presence of additional lysine residues in delta(2)-N terminus. Analysis of delta(2)-N terminus identified two sequences that independently reduce channel abundance in the plasma membrane. The delta(1) higher abundance is consistent with an increased insertion rate into the membrane, since endocytosis rates of both isoforms are indistinguishable. Finally, we conclude that delta-ENaC undergoes dynamin-independent endocytosis as opposed to alpha beta gamma-channels.
The vectorial transport of Na+ across epithelia is crucial for the maintenance of Na+ and water homeostasis in organs such as the kidneys, lung, or intestine. Dysregulated Na+ transport processes are associated with various human diseases such as hypertension, the salt-wasting syndrome pseudohypoaldosteronism type 1, pulmonary edema, cystic fibrosis, or intestinal disorders, which indicate that a precise regulation of epithelial Na+ transport is essential. Novel regulatory signaling molecules are gasotransmitters. There are currently three known gasotransmitters: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). These molecules are endogenously produced in mammalian cells by specific enzymes and have been shown to regulate various physiological processes. There is a growing body of evidence which indicates that gasotransmitters may also regulate Na+ transport across epithelia. This review will summarize the available data concerning NO, CO, and H2S dependent regulation of epithelial Na+ transport processes and will discuss whether or not these mediators can be considered as true physiological regulators of epithelial Na+ transport biology.
The ability to breathe air represents a fundamental step in vertebrate evolution that was accompanied by several anatomical and physiological adaptations. The morphology of the air-blood barrier is highly conserved within air-breathing vertebrates. It is formed by three different plies, which are represented by the alveolar epithelium, the basal lamina, and the endothelial layer. Besides these conserved morphological elements, another common feature of vertebrate lungs is that they contain a certain amount of fluid that covers the alveolar epithelium. The volume and composition of the alveolar fluid is regulated by transepithelial ion transport mechanisms expressed in alveolar epithelial cells. These transport mechanisms have been reviewed extensively. Therefore, the present review focuses on the properties and functional significance of the alveolar fluid. How does the fluid enter the alveoli? What is the fate of the fluid in the alveoli? What is the function of the alveolar fluid in the lungs? The review highlights the importance of the alveolar fluid, its volume and its composition. Maintenance of the fluid volume and composition within certain limits is critical to facilitate gas exchange. We propose that the alveolar fluid is an essential element of the air-blood barrier. Therefore, it is appropriate to refer to this barrier as being formed by four plies, namely (1) the thin fluid layer covering the apical membrane of the epithelial cells, (2) the epithelial cell layer, (3) the basal membrane, and (4) the endothelial cells.
SLC6A14 (ATB0,+) is unique among SLC proteins in its ability to transport 18 of the 20 proteinogenic (dipolar and cationic) amino acids and naturally occurring and synthetic analogues (including anti-viral prodrugs and nitric oxide synthase (NOS) inhibitors). SLC6A14 mediates amino acid uptake in multiple cell types where increased expression is associated with pathophysiological conditions including some cancers. Here, we investigated how a key position within the core LeuT-fold structure of SLC6A14 influences substrate specificity. Homology modelling and sequence analysis identified the transmembrane domain 3 residue V128 as equivalent to a position known to influence substrate specificity in distantly related SLC36 and SLC38 amino acid transporters. SLC6A14, with and without V128 mutations, was heterologously expressed and function determined by radiotracer solute uptake and electrophysiological measurement of transporter-associated current. Substituting the amino acid residue occupying the SLC6A14 128 position modified the binding pocket environment and selectively disrupted transport of cationic (but not dipolar) amino acids and related NOS inhibitors. By understanding the molecular basis of amino acid transporter substrate specificity we can improve knowledge of how this multi-functional transporter can be targeted and how the LeuT-fold facilitates such diversity in function among the SLC6 family and other SLC amino acid transporters.
Host-derived succinate accumulates in the airways during bacterial infection. Here, we show that luminal succinate activates murine tracheal brush (tuft) cells through a signaling cascade involving the succinate receptor 1 (SUCNR1), phospholipase Cβ2, and the cation channel transient receptor potential channel subfamily M member 5 (TRPM5). Stimulated brush cells then trigger a long-range Ca2+ wave spreading radially over the tracheal epithelium through a sequential signaling process. First, brush cells release acetylcholine, which excites nearby cells via muscarinic acetylcholine receptors. From there, the Ca2+ wave propagates through gap junction signaling, reaching also distant ciliated and secretory cells. These effector cells translate activation into enhanced ciliary activity and Cl- secretion, which are synergistic in boosting mucociliary clearance, the major innate defense mechanism of the airways. Our data establish tracheal brush cells as a central hub in triggering a global epithelial defense program in response to a danger-associated metabolite.
Hydrogen sulfide contributes to hypoxic inhibition of airway transepithelial sodium absorption
(2016)
An increased bronchoconstrictor response is a hallmark in the progression of obstructive airway diseases. Acetylcholine and 5-hydroxytryptamine (5-HT, serotonin) are the major bronchoconstrictors. There is evidence that both cholinergic and serotonergic signaling in airway smooth muscle (ASM) involve caveolae. We hypothesized that caveolin-1 (cav-1), a structural protein of caveolae, plays an important regulatory role in ASM contraction. We analyzed airway contraction in different tracheal segments and extra-and intrapulmonary bronchi in cav-1 deficient (cav-1-/-) and wild-type mice using organ bath recordings and videomorphometry of methyl-beta-cyclodextrin (MCD) treated and non-treated precision-cut lung slices (PCLS). The presence of caveolae was investigated by electron microscopy. Receptor subtypes driving 5-HT-responses were studied by RT-PCR and videomorphometry after pharmacological inhibition with ketanserin. Cav-1 was present in tracheal epithelium and ASM. Muscarine induced a dose dependent contraction in all airway segments. A significantly higher Emax was observed in the caudal trachea. Although, caveolae abundancy was largely reduced in cav-1-/- mice, muscarine-induced airway contraction was maintained, albeit at diminished potency in the middle trachea, in the caudal trachea and in the bronchus without changes in the maximum efficacy. MCD-treatment of PLCS from cav-1-/- mice reduced cholinergic constriction by about 50%, indicating that cholesterol-rich plasma domains account for a substantial portion of the muscarine-induced bronchoconstriction. Notably, cav-1-deficiency fully abrogated 5-HT-induced contraction of extrapulmonary airways. In contrast, 5-HT-induced bronchoconstriction was fully maintained in cav-1-deficient intrapulmonary bronchi, but desensitization upon repetitive stimulation was enhanced. RT-PCR analysis revealed 5-HT1B, 5-HT2A, 5-HT6, and 5-HT7 receptors as the most prevalent subtypes in the airways. The 5-HT-induced-constriction in PCLS could be antagonized by ketanserin, a 5-HT2A receptor inhibitor. In conclusion, the role of cav-1, caveolae, and cholesterol-rich plasma domains in regulation of airway tone are highly agonist-specific and dependent on airway level. Cav-1 is indispensable for serotonergic contraction of extrapulmonary airways and modulates cholinergic constriction of the trachea and main bronchus. Thus, cav-1/caveolae shall be considered in settings such as bronchial hyperreactivity in common airway diseases and might provide an opportunity for modulation of the constrictor response.
Hydrogen sulfide stimulates CFTR in Xenopus oocytes by activation of the cAMP/PKA signalling axis
(2017)
Hydrogen sulfide (H2S) has been recognized as a signalling molecule which affects the activity of ion channels and transporters in epithelial cells. The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial anion channel and a key regulator of electrolyte and fluid homeostasis. In this study, we investigated the regulation of CFTR by H2S. Human CFTR was heterologously expressed in Xenopus oocytes and its activity was electrophysiologically measured by microelectrode recordings. The H2S-forming sulphur salt Na2S as well as the slow-releasing H2S-liberating compound GYY4137 increased transmembrane currents of CFTR-expressing oocytes. Na2S had no effect on native, noninjected oocytes. The effect of Na2S was blocked by the CFTR inhibitor CFTR_inh172, the adenylyl cyclase inhibitor MDL 12330A, and the protein kinase A antagonist cAMPS-Rp. Na2S potentiated CFTR stimulation by forskolin, but not that by IBMX. Na2S enhanced CFTR stimulation by membranepermeable 8Br-cAMP under inhibition of adenylyl cyclase-mediated cAMP production by MDL 12330A. These data indicate that H2S activates CFTR in Xenopus oocytes by inhibiting phosphodiesterase activity and subsequent stimulation of CFTR by cAMP-dependent protein kinase A. In epithelia, an increased CFTR activity may correspond to a pro-secretory response to H2S which may be endogenously produced by the epithelium or H2S-generating microflora.
Recently, we discovered a cholinergic mechanism that inhibits the adenosine triphosphate (ATP)-dependent release of interleukin-1 beta (IL-1 beta) by human monocytes via nicotinic acetylcholine receptors (nAChRs) composed of alpha 7, alpha 9 and/or alpha 10 subunits. Furthermore, we identified phosphocholine (PC) and dipalmitoylphosphatidylcholine (DPPC) as novel nicotinic agonists that elicit metabotropic activity at monocytic nAChR. Interestingly, PC does not provoke ion channel responses at conventional nAChRs composed of subunits alpha 9 and alpha 10. The purpose of this study is to determine the composition of nAChRs necessary for nicotinic signaling in monocytic cells and to test the hypothesis that common metabolites of phosphatidylcholines, lysophosphatidylcholine (LPC) and glycerophosphocholine (G-PC), function as nAChR agonists. In peripheral blood mononuclear cells from nAChR gene-deficient mice, we demonstrated that inhibition of ATP-dependent release of IL-1 beta by acetylcholine (ACh), nicotine and PC depends on subunits alpha 7, alpha 9 and alpha 10. Using a panel of nAChR antagonists and siRNA technology, we confirmed the involvement of these subunits in the control of IL-1 beta release in the human monocytic cell line U937. Furthermore, we showed that LPC (C16:0) and G-PC efficiently inhibit ATP-dependent release of IL-1 beta. Of note, the inhibitory effects mediated by LPC and G-PC depend on nAChR subunits alpha 9 and alpha 10, but only to a small degree on alpha 7. In Xenopus laevis oocytes heterologously expressing different combinations of human alpha 7, alpha 9 or alpha 10 subunits, ACh induced canonical ion channel activity, whereas LPC, G-PC and PC did not. In conclusion, we demonstrate that canonical nicotinic agonists and PC elicit metabotropic nAChR activity in monocytes via interaction of nAChR subunits alpha 7, alpha 9 and alpha 10. For the metabotropic signaling of LPC and G-PC, nAChR subunits alpha 9 and alpha 10 are needed, whereas alpha 7 is virtually dispensable. Furthermore, molecules bearing a PC group in general seem to regulate immune functions without perturbing canonical ion channel functions of nAChR.
The epithelial sodium channel (ENaC) is a critical regulator of vertebrate electrolyte homeostasis. ENaC is the only constitutively open ion channel in the degenerin/ENaC protein family, and its expression, membrane abundance, and open probability therefore are tightly controlled. The canonical ENaC is composed of three subunits (, , and ), but a fourth -subunit may replace and form atypical -ENaCs. Using Xenopus laevis as a model, here we found that mRNAs of the - and -subunits are differentially expressed in different tissues and that -ENaC predominantly is present in the urogenital tract. Using whole-cell and single-channel electrophysiology of oocytes expressing Xenopus - or -ENaC, we demonstrate that the presence of the -subunit enhances the amount of current generated by ENaC due to an increased open probability, but also changes current into a transient form. Activity of canonical ENaCs is critically dependent on proteolytic processing of the - and -subunits, and immunoblotting with epitope-tagged ENaC subunits indicated that, unlike -ENaC, the -subunit does not undergo proteolytic maturation by the endogenous protease furin. Furthermore, currents generated by -ENaC were insensitive to activation by extracellular chymotrypsin, and presence of the -subunit prevented cleavage of -ENaC at the cell surface. Our findings suggest that subunit composition constitutes an additional level of ENaC regulation, and we propose that the Xenopus -ENaC subunit represents a functional example that demonstrates the importance of proteolytic maturation during ENaC evolution.
Evolutionary conservation of the antimicrobial function of mucus: a first defence against infection
(2018)
Mucus layers often provide a unique and multi-functional hydrogel interface between the epithelial cells of organisms and their external environment. Mucus has exceptional properties including elasticity, changeable rheology and an ability to self-repair by reannealing, and is therefore an ideal medium for trapping and immobilising pathogens and serving as a barrier to microbial infection. The ability to produce a functional surface mucosa was an important evolutionary step, which evolved first in the Cnidaria, which includes corals, and the Ctenophora. This allowed the exclusion of non-commensal microbes and the subsequent development of the mucus-lined digestive cavity seen in higher metazoans. The fundamental architecture of the constituent glycoprotein mucins is also evolutionarily conserved. Although an understanding of the biochemical interactions between bacteria and the mucus layer are important to the goal of developing new antimicrobial strategies, they remain relatively poorly understood. This review summarises the physicochemical properties and evolutionary importance of mucus, which make it so successful in the prevention of bacterial infection. In addition, the strategies developed by bacteria to counteract the mucus layer are also explored.
Cholinergic polymodal chemosensory cells in the mammalian urethra (urethral brush cells = UBC) functionally express the canonical bitter and umami taste transduction signaling cascade. Here, we aimed to determine whether UBC are functionally equipped for the perception of salt through ENaC (epithelial sodium channel). Cholinergic UBC were isolated from ChAT-eGFP reporter mice (ChAT = choline acetyltransferase). RT-PCR showed mRNA expression of ENaC subunits Scnn1a, Scnn1b, and Scnn1g in urethral epithelium and isolated UBC. Scnn1a could also be detected by next generation sequencing in 4/6 (66%) single UBC, two of them also expressed the bitter receptor Tas2R108. Strong expression of Scnn1a was seen in some urothelial umbrella cells and in 65% of UBC (30/46 cells) in a Scnn1a reporter mouse strain. Intracellular [Ca2+] was recorded in isolated UBC stimulated with the bitter substance denatonium benzoate (25 mM), ATP (0.5 mM) and NaCl (50 mM, on top of 145 mM Na+ and 153 mM Cl- baseline in buffer); mannitol (150 mM) served as osmolarity control. NaCl, but not mannitol, evoked an increase in intracellular [Ca2+] in 70% of the tested UBC. The NaCl-induced effect was blocked by the ENaC inhibitor amiloride (IC50 = 0.471 mu M). When responses to both NaCl and denatonium were tested, all three possible positive response patterns occurred in a balanced distribution: 42% NaCl only, 33% denatonium only, 25% to both stimuli. A similar reaction pattern was observed with ATP and NaCl as test stimuli. About 22% of the UBC reacted to all three stimuli. Thus, NaCl evokes calcium responses in several UBC, likely involving an amiloride-sensitive channel containing alpha-ENaC. This feature does not define a new subpopulation of UBC, but rather emphasizes their polymodal character. The actual function of alpha-ENaC in cholinergic UBC-salt perception, homeostatic ion transport, mechanoreception-remains to be determined.
The limited sodium availability of freshwater and terrestrial environments was a major physiological challenge during vertebrate evolution. The epithelial sodium channel (ENaC) is present in the apical membrane of sodium-absorbing vertebrate epithelia and evolved as part of a machinery for efficient sodium conservation. ENaC belongs to the degenerin/ENaC protein family and is the only member that opens without an external stimulus. We hypothesized that ENaC evolved from a proton-activated sodium channel present in ionocytes of freshwater vertebrates and therefore investigated whether such ancestral traits are present in ENaC isoforms of the aquatic pipid frog Xenopus laevis. Using whole-cell and single-channel electrophysiology of Xenopus oocytes expressing ENaC isoforms assembled from alpha beta gamma- or delta beta gamma-subunit combinations, we demonstrate that Xenopus delta beta gamma-ENaC is profoundly activated by extracellular acidification within biologically relevant ranges (pH 8.0-6.0). This effect was not observed in Xenopus alpha beta gamma-ENaC or human ENaC orthologs. We show that protons interfere with allosteric ENaC inhibition by extracellular sodium ions, thereby increasing the probability of channel opening. Using homology modeling of ENaC structure and site-directed mutagenesis, we identified a cleft region within the extracellular loop of the delta-subunit that contains several acidic amino acid residues that confer proton-sensitivity and enable allosteric inhibition by extracellular sodium ions. We propose that Xenopus delta beta gamma-ENaC can serve as a model for investigating ENaC transformation from a proton-activated toward a constitutively-active ion channel. Such transformation might have occurred during the evolution of tetrapod vertebrates to enable bulk sodium absorption during the water-to-land transition.
Plant sap-feeding insects are widespread, having evolved to occupy diverse environmental niches despite exclusive feeding on an impoverished diet lacking in essential amino acids and vitamins. Success depends exquisitely on their symbiotic relationships with microbial symbionts housed within specialized eukaryotic bacteriocyte cells. Each bacteriocyte is packed with symbionts that are individually surrounded by a host-derived symbiosomal membrane representing the absolute host-symbiont interface. The symbiosomal membrane must be a dynamic and selectively permeable structure to enable bidirectional and differential movement of essential nutrients, metabolites, and biosynthetic intermediates, vital for growth and survival of host and symbiont. However, despite this crucial role, the molecular basis of membrane transport across the symbiosomal membrane remains unresolved in all bacteriocyte-containing insects. A transport protein was immuno-localized to the symbiosomal membrane separating the pea aphid Acyrthosiphon pisum from its intracellular symbiont Buchnera aphidicola. The transporter, A. pisum nonessential amino acid transporter 1, or ApNEAAT1 (gene: ACYPI008971), was characterized functionally following heterologous expression in Xenopus oocytes, and mediates both inward and outward transport of small dipolar amino acids (serine, proline, cysteine, alanine, glycine). Electroneutral ApNEAAT1 transport is driven by amino acid concentration gradients and is not coupled to transmembrane ion gradients. Previous metabolite profiling of hemolymph and bacteriocyte, alongside metabolic pathway analysis in host and symbiont, enable prediction of a physiological role for ApNEAAT1 in bidirectional host-symbiont amino acid transfer, supplying both host and symbiont with indispensable nutrients and biosynthetic precursors to facilitate metabolic complementarity.
Pitfalls of using sequence databases for heterologous expression studies - a technical review
(2023)
Synthesis of DNA fragments based on gene sequences available in public resources has become an efficient and affordable method that gradually replaced traditional cloning efforts such as PCR cloning from cDNA. However, database entries based on genome sequencing results are prone to errors which can lead to false sequence information and, ultimately, errors in functional characterization of proteins such as ion channels and transporters in heterologous expression systems. We have identified five common problems that repeatedly appear in public resources: 1) Not every gene has yet been annotated; 2) Not all gene annotations are necessarily correct; 3) Transcripts may contain automated corrections; 4) There are mismatches between gene, mRNA, and protein sequences; and 5) Splicing patterns often lack experimental validation. This technical review highlights and provides a strategy to bypass these issues in order to avoid critical mistakes that could impact future studies of any gene/protein of interest in heterologous expression systems. Abstract figure legend Projects involving heterologous gene expression are often characterised by similar steps. Initially, database research (A) is necessary to retrieve information of full of partial sequences of a gene of interest. A multitude of genome assemblies are annotated and deposited in public databases or that are available for refined search options using individual sequence information. The search results need to be scrutinised and compared to already available information (B). Once the sequence has been determined, DNA synthesis (C) by PCR or commercial synthesis are necessary for further cloning procedures (D). Eventually, the DNA needs to be transfected (E) and expressed in, e.g., eukaryotic cells (F). Finally, the expression of the gene of interest needs to be documented and its function analysed (G). This article is protected by copyright. All rights reserved.
ENaC channels
(2023)
More than 25 years ago, it was a big surprise for physiologists that nitric oxide (NO) was identified as the endothelium derived relaxing factor which is responsible for endothelium-induced smooth muscle relaxation (Ignarro et al., 1987). Until then, small gaseous molecules were simply regarded as byproducts of cellular metabolism which were unlikely to be of any physiological relevance. The discovery that NO was synthesized by specific enzymes (NO-synthases), upon stimulation by specific, physiologically relevant stimuli (e.g., acetylcholine stimulation of endothelial cells), as well as the fact that it acted on specific cellular targets (e.g., soluble guanylate cyclase), set the course for numerous studies which investigated the physiological roles of gaseous signaling molecules—in other words, gasotransmitters (Wang, 2002).
Hydrogen sulfide (H2S) is well known as a highly toxic environmental chemical threat. Prolonged exposure to H2S can lead to the formation of pulmonary edema. However, the mechanisms of how H2S facilitates edema formation are poorly understood. Since edema formation can be enhanced by an impaired clearance of electrolytes and, consequently, fluid across the alveolar epithelium, it was questioned whether H2S may interfere with transepithelial electrolyte absorption. Electrolyte absorption was electrophysiologically measured across native distal lung preparations (Xenopus laevis) in Ussing chambers. The exposure of lung epithelia to H2S decreased net transepithelial electrolyte absorption. This was due to an impairment of amiloride-sensitive sodium transport. H2S inhibited the activity of the Na+/K+-ATPase as well as lidocaine-sensitive potassium channels located in the basolateral membrane of the epithelium. Inhibition of these transport molecules diminishes the electrochemical gradient which is necessary for transepithelial sodium absorption. Since sodium absorption osmotically facilitates alveolar fluid clearance, interference of H2S with the epithelial transport machinery provides a mechanism which enhances edema formation in H2S-exposed lungs.
Hydrogen sulfide (H2S) is a well-known environmental chemical threat with an unpleasant smell of rotten eggs. Aside from the established toxic effects of high-dose H2S, research over the past decade revealed that cells endogenously produce small amounts of H2S with physiological functions. H2S has therefore been classified as a gasotransmitter. A major challenge for cells and tissues is the maintenance of low physiological concentrations of H2S in order to prevent potential toxicity. Epithelia of the respiratory and gastrointestinal tract are especially faced with this problem, since these barriers are predominantly exposed to exogenous H2S from environmental sources or sulfur-metabolising microbiota. In this paper, we review the cellular mechanisms by which epithelial cells maintain physiological, endogenous H2S concentrations. Furthermore, we suggest a concept by which epithelia use their electrolyte and liquid transport machinery as defence mechanisms in order to eliminate exogenous sources for potentially harmful H2S concentrations.
The ability to discriminate between different ionic species, termed ion selectivity, is a key feature of ion channels and forms the basis for their physiological function. Members of the degenerin/epithelial sodium channel (DEG/ENaC) superfamily of trimeric ion channels are typically sodium selective, but to a surprisingly variable degree. While acid-sensing ion channels (ASICs) are weakly sodium selective (sodium:potassium around 10:1), ENaCs show a remarkably high preference for sodium over potassium (>500:1). The most obvious explanation for this discrepancy may be expected to originate from differences in the pore-lining second transmembrane segment (M2). However, these show a relatively high degree of sequence conservation between ASICs and ENaCs and previous functional and structural studies could not unequivocally establish that differences in M2 alone can account for the disparate degrees of ion selectivity. By contrast, surprisingly little is known about the contributions of the first transmembrane segment (M1) and the preceding pre-M1 region. In this study, we use conventional and non-canonical amino acid-based mutagenesis in combination with a variety of electrophysiological approaches to show that the pre-M1 and M1 regions of mASIC1a channels are major determinants of ion selectivity. Mutational investigations of the corresponding regions in hENaC show that they contribute less to ion selectivity, despite affecting ion conductance. In conclusion, our work supports the notion that the remarkably different degrees of sodium selectivity in ASICs and ENaCs are achieved through different mechanisms. The results further highlight how M1 and pre-M1 are likely to differentially affect pore structure in these related channels.
The ability to discriminate between different ionic species, termed ion selectivity, is a key feature of ion channels and forms the basis for their physiological function. Members of the degenerin/epithelial sodium channel (DEG/ENaC) superfamily of trimeric ion channels are typically sodium selective, but to a surprisingly variable degree. While acid-sensing ion channels (ASICs) are weakly sodium selective (sodium:potassium ratio ∼10:1), ENaCs show a remarkably high preference for sodium over potassium (>500:1). This discrepancy may be expected to originate from differences in the pore-lining second transmembrane segment (M2). However, these show a relatively high degree of sequence conservation between ASICs and ENaCs, and previous functional and structural studies could not unequivocally establish that differences in M2 alone can account for the disparate degrees of ion selectivity. By contrast, surprisingly little is known about the contributions of the first transmembrane segment (M1) and the preceding pre-M1 region. In this study, we used conventional and noncanonical amino acid-based mutagenesis in combination with a variety of electrophysiological approaches to show that the pre-M1 and M1 regions of mASIC1a channels are major determinants of ion selectivity. Mutational investigations of the corresponding regions in hENaC show that these regions contribute less to ion selectivity, despite affecting ion conductance. In conclusion, our work suggests that the remarkably different degrees of sodium selectivity in ASICs and ENaCs are achieved through different mechanisms. These results further highlight how M1 and pre-M1 are likely to differentially affect pore structure in these related channels.
The epithelial sodium channel (ENaC) is a heterotrimeric ion channel that plays a key role in sodium and water homeostasis in tetrapod vertebrates. In the aldosterone-sensitive distal nephron, hormonally controlled ENaC expression matches dietary sodium intake to its excretion. Furthermore, ENaC mediates sodium absorption across the epithelia of the colon, sweat ducts, reproductive tract, and lung. ENaC is a constitutively active ion channel and its expression, membrane abundance, and open probability (PO) are controlled by multiple intracellular and extracellular mediators and mechanisms [9]. Aberrant ENaC regulation is associated with severe human diseases, including hypertension, cystic fibrosis, pulmonary edema, pseudohypoaldosteronism type 1, and nephrotic syndrome [9].
Cysticfibrosis (CF) arises from mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in progressiveand life-limiting respiratory disease. R751L is a rare CFTR mutation that is poorly characterized. Our aims were to describe theclinical and molecular phenotypes associated with R751L. Relevant clinical data were collected from three heterozygote individu-als harboring R751L (2 patients with G551D/R751L and 1 with F508del/R751L). Assessment of R751L-CFTR function was made inprimary human bronchial epithelial cultures (HBEs) andXenopusoocytes. Molecular properties of R751L-CFTR were investigatedin the presence of known CFTR modulators. Although sweat chloride was elevated in all three patients, the clinical phenotypeassociated with R751L was mild. Chloride secretion in F508del/R751L HBEs was reduced compared with non-CF HBEs and asso-ciated with a reduction in sodium absorption by the epithelial sodium channel (ENaC). However, R751L-CFTR function inXenopusoocytes, together with folding and cell surface transport of R751L-CFTR, was not different from wild-type CFTR. Overall,R751L-CFTR was associated with reduced sodium chloride absorption but had functional properties similar to wild-type CFTR.This is thefirst report of R751L-CFTR that combines clinical phenotype with characterization of functional and biological proper-ties of the mutant channel. Our work will build upon existing knowledge of mutations within this region of CFTR and, importantly,inform approaches for clinical management. Elevated sweat chloride and reduced chloride secretion in HBEs may be due to al-ternative non-CFTR factors, which require further investigation.
Here we provide the electrophysiology data for the manuscript "Two functional epithelial sodium channel isoforms are present in rodents despite pronounced evolutionary pseudogenization and exon fusion", published in Molecular Biology and Evolution (2021): msab271 (doi: 10.1093/molbev/msab271). Data are reported as current values in Excel format, sorted according to the appearance in Figures and supplemented by explanatory text on the procedures/data presentation.
The epithelial sodium channel (ENaC) plays a key role in osmoregulation in tetrapod vertebrates and is a candidate receptor for salt taste sensation. There are four ENaC subunits (alpha, beta, gamma, & delta) which form alpha beta gamma or delta beta gamma-ENaCs. While alpha beta gamma-ENaC is a maintenance protein controlling sodium and potassium homeostasis, delta beta gamma-ENaC might represent a stress protein monitoring high sodium concentrations. The delta-subunit emerged with water-to-land transition of tetrapod vertebrate ancestors. We investigated the evolutionary path of ENaC-coding genes in Cetartiodactyla, a group comprising even-toed ungulates and the cetaceans (whales/dolphins) which transitioned from terrestrial to marine environments in the Eocene. The genes SCNN1A (alpha-ENaC), SCNN1B (beta-ENaC) and SCNN1G (gamma-ENaC) are intact in all 22 investigated cetartiodactylan families. While SCNN1D (delta-ENaC) is intact in terrestrial Artiodactyla, it is a pseudogene in 12 cetacean families. A fusion of SCNN1D exons 11 and 12 under preservation of the open reading frame was observed in the Antilopinae, representing a new feature of this clade. Transcripts of SCNN1A, SCNN1B and SCNN1G were present in kidney and lung tissues of Bottlenose dolphins, highlighting alpha beta gamma-ENaC's role as a maintenance protein. Consistent with SCNN1D loss, Bottlenose dolphins and Beluga whales did not show behavioural differences to stimuli with or without sodium in seawater-equivalent concentrations. These data suggest a function of delta-ENaC as a sodium sensing protein which might have become obsolete in cetaceans after the migration to high-salinity marine environments. Consistently, there is reduced selection pressure or pseudogenisation of SCNN1D in other marine mammals, including sirenians, pinnipeds and sea otter.
The epithelial sodium channel (ENaC) plays a key role in salt and water homeostasis in tetrapod vertebrates. There are four ENaC subunits (α, β, γ, δ), forming heterotrimeric αβγ- or δβγ-ENaCs. While the physiology of αβγ-ENaC is well understood, for decades the field has stalled with respect to δβγ-ENaC due to the lack of mammalian model organisms. The SCNN1D gene coding for δ-ENaC was previously believed to be absent in rodents, hindering studies using standard laboratory animals. We analysed all currently available rodent genomes and discovered that SCNN1D is present in rodents but was independently lost in five rodent lineages, including the Muridae (mice and rats). The independent loss of SCNN1D in rodent lineages may be constrained by phylogeny and taxon-specific adaptation to dry habitats, however habitat aridity does not provide a selection pressure for maintenance of SCNN1D across Rodentia. A fusion of two exons coding for a structurally flexible region in the extracellular domain of δ-ENaC appeared in the Hystricognathi (a group that includes guinea pigs). This conserved pattern evolved at least 41 Ma ago and represents a new autapomorphic feature for this clade. Exon fusion does not impair functionality of guinea pig (Cavia porcellus) δβγ-ENaC expressed in Xenopus oocytes. Electrophysiological characterisation at the whole-cell and single-channel level revealed conserved biophysical features and mechanisms controlling guinea pig αβγ- and δβγ-ENaC function as compared to human orthologues. Guinea pigs therefore represent commercially available mammalian model animals that will help shed light on the physiological function of δ-ENaC.
The epithelial sodium channel (ENaC) is a key regulator of sodium homeostasis that contributes to blood pressure control. ENaC open probability is adjusted by extracellular sodium ions, a mechanism referred to as sodium self-inhibition (SSI). With a growing number of identified ENaC gene variants associated with hypertension, there is an increasing demand for medium- to high-throughput assays allowing the detection of alterations in ENaC activity and SSI. We evaluated a commercially available automated two-electrode voltage-clamp (TEVC) system that records transmembrane currents of ENaC-expressing Xenopus oocytes in 96-well microtiter plates. We employed guinea pig, human and Xenopus laevis ENaC orthologs that display specific magnitudes of SSI. While demonstrating some limitations over traditional TEVC systems with customized perfusion chambers, the automated TEVC system was able to detect the established SSI characteristics of the employed ENaC orthologs. We were able to confirm a reduced SSI in a gene variant, leading to C479R substitution in the human α-ENaC subunit that has been reported in Liddle syndrome. In conclusion, automated TEVC in Xenopus oocytes can detect SSI of ENaC orthologs and variants associated with hypertension. For precise mechanistic and kinetic analyses of SSI, optimization for faster solution exchange rates is recommended.
The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel and the epithelial Na+ channel (ENaC) play essential roles in transepithelial ion and fluid transport in numerous epithelial tissues. Inhibitors of both channels have been important tools for defining their physiological role in vitro. However, two commonly used CFTR inhibitors, CFTRinh-172 and GlyH-101, also inhibit non-CFTR anion channels, indicating they are not CFTR specific. However, the potential off-target effects of these inhibitors on epithelial cation channels has to date not been addressed. Here, we show that both CFTR blockers, at concentrations routinely employed by many researchers, caused a significant inhibition of store-operated calcium entry (SOCE) that was time-dependent, poorly reversible and independent of CFTR. Patch clamp experiments showed that both CFTRinh-172 and GlyH-101 caused a significant block of Orai1-mediated whole cell currents, establishing that they likely reduce SOCE via modulation of this Ca2+ release-activated Ca2+ (CRAC) channel. In addition to off-target effects on calcium channels, both inhibitors significantly reduced human αβγ-ENaC-mediated currents after heterologous expression in Xenopus oocytes, but had differential effects on δβγ-ENaC function. Molecular docking identified two putative binding sites in the extracellular domain of ENaC for both CFTR blockers. Together, our results indicate that caution is needed when using these two CFTR inhibitors to dissect the role of CFTR, and potentially ENaC, in physiological processes.