Refine
Departments, institutes and facilities
Document Type
- Article (6)
Language
- English (6)
Keywords
- Ankle Joint (1)
- Antibody Induced Arthritis (1)
- Arthritis (1)
- Articular Cartilage (1)
- CD40 (1)
- Cartilage Destruction (1)
- Complement receptor 2 /CD21 (1)
- Gelatin Zymography (1)
- Joint Destruction (1)
- K/BxN (1)
Matrix metalloproteinases (MMPs) are matrix-degrading enzymes that are over-expressed in joints of rheumatoid arthritis (RA) patients. However, the contribution of specific MMPs for the development of arthritic joints is unknown. This study is aimed at studying the role of matrix metalloproteinase-9 (MMP-9) in mice, using the K/BxN serum-transfer model of RA. Arthritis was induced in Balb/c mice by injecting K/BxN serum. Development of arthritis was followed in these mice by measuring ankle thickness and clinical index score. MMP-9 expression in the joints of mice killed at various time points during the disease progression was determined by gelatin zymography using ankle lysates. We found that MMP-9 expression increased with the severity of arthritis. Importantly MMP-9 deficient mice injected with K/BxN serum showed a milder form of arthritis in comparison to the control C57BL/6 mice injected with K/BxN serum. We therefore conclude that MMP-9 promotes arthritis in mice.
TNF-related activation-induced cytokine (TRANCE), also known as receptor activator of NF-kappaB ligand (RANKL), is the key molecule responsible for the bone loss observed in osteoporosis. Passive administration of osteoprotegerin, the soluble decoy receptor of TRANCE/RANKL, is efficient in blocking disease progression, but may not find widespread clinical use due to patient compliance problems and the expected high costs. In this study, we describe an efficient, safe, and potentially cost-effective active immunization strategy against TRANCE/RANKL. We show in mice that immunization with TRANCE/RANKL covalently linked to virus-like particles can overcome the natural tolerance of the immune system toward self proteins and produce high levels of specific Abs without the addition of any adjuvant. Serum Abs of immunized mice neutralized TRANCE/RANKL activity in vitro and were highly active in preventing bone loss in a mouse model of osteoporosis. Active immunization against TRANCE/RANKL was essentially reversible and did not produce any measurable immunosuppressive side effects, underscoring its potential as a new therapeutic approach to the treatment of human bone-degenerative disorders.
Introduction: Matrix metalloproteinases (MMPs) are important in tissue remodelling. Here we investigate the role of collagenase-3 (MMP-13) in antibody-induced arthritis.
Methods: For this study we employed the K/BxN serum-induced arthritis model. Arthritis was induced in C57BL/6 wild type (WT) and MMP-13-deficient (MMP-13–/–) mice by intraperitoneal injection of 200 μl of K/BxN serum. Arthritis was assessed by measuring the ankle swelling. During the course of the experiments, mice were sacrificed every second day for histological examination of the ankle joints. Ankle sections were evaluated histologically for infiltration of inflammatory cells, pannus tissue formation and bone/cartilage destruction. Semi-quantitative PCR was used to determine MMP-13 expression levels in ankle joints of untreated and K/BxN serum-injected mice.
Results: This study shows that MMP-13 is a regulator of inflammation. We observed increased expression of MMP-13 in ankle joints of WT mice during K/BxN serum-induced arthritis and both K/BxN serum-treated WT and MMP-13–/– mice developed progressive arthritis with a similar onset. However, MMP-13–/– mice showed significantly reduced disease over the whole arthritic period. Ankle joints of WT mice showed severe joint destruction with extensive inflammation and erosion of cartilage and bone. In contrast, MMP-13–/– mice displayed significantly decreased severity of arthritis (50% to 60%) as analyzed by clinical and histological scoring methods.
Conclusions: MMP-13 deficiency acts to suppress the local inflammatory responses. Therefore, MMP-13 has a role in the pathogenesis of arthritis, suggesting MMP-13 is a potential therapeutic target.