Refine
H-BRS Bibliography
- yes (10)
Departments, institutes and facilities
Document Type
- Preprint (5)
- Conference Object (4)
- Report (1)
Language
- English (10)
Keywords
Recent work in image captioning and scene-segmentation has shown significant results in the context of scene-understanding. However, most of these developments have not been extrapolated to research areas such as robotics. In this work we review the current state-ofthe- art models, datasets and metrics in image captioning and scenesegmentation. We introduce an anomaly detection dataset for the purpose of robotic applications, and we present a deep learning architecture that describes and classifies anomalous situations. We report a METEOR score of 16.2 and a classification accuracy of 97 %.
Current robot platforms are being employed to collaborate with humans in a wide range of domestic and industrial tasks. These environments require autonomous systems that are able to classify and communicate anomalous situations such as fires, injured persons, car accidents; or generally, any potentially dangerous situation for humans. In this paper we introduce an anomaly detection dataset for the purpose of robot applications as well as the design and implementation of a deep learning architecture that classifies and describes dangerous situations using only a single image as input. We report a classification accuracy of 97 % and METEOR score of 16.2. We will make the dataset publicly available after this paper is accepted.
In this paper we propose an implement a general convolutional neural network (CNN) building framework for designing real-time CNNs. We validate our models by creating a real-time vision system which accomplishes the tasks of face detection, gender classification and emotion classification simultaneously in one blended step using our proposed CNN architecture. After presenting the details of the training procedure setup we proceed to evaluate on standard benchmark sets. We report accuracies of 96% in the IMDB gender dataset and 66% in the FER-2013 emotion dataset. Along with this we also introduced the very recent real-time enabled guided back-propagation visualization technique. Guided back-propagation uncovers the dynamics of the weight changes and evaluates the learned features. We argue that the careful implementation of modern CNN architectures, the use of the current regularization methods and the visualization of previously hidden features are necessary in order to reduce the gap between slow performances and real-time architectures. Our system has been validated by its deployment on a Care-O-bot 3 robot used during RoboCup@Home competitions. All our code, demos and pre-trained architectures have been released under an open-source license in our public repository.
In this paper we introduce the Perception for Autonomous Systems (PAZ) software library. PAZ is a hierarchical perception library that allow users to manipulate multiple levels of abstraction in accordance to their requirements or skill level. More specifically, PAZ is divided into three hierarchical levels which we refer to as pipelines, processors, and backends. These abstractions allows users to compose functions in a hierarchical modular scheme that can be applied for preprocessing, data-augmentation, prediction and postprocessing of inputs and outputs of machine learning (ML) models. PAZ uses these abstractions to build reusable training and prediction pipelines for multiple robot perception tasks such as: 2D keypoint estimation, 2D object detection, 3D keypoint discovery, 6D pose estimation, emotion classification, face recognition, instance segmentation, and attention mechanisms.
Object detectors have improved considerably in the last years by using advanced CNN architectures. However, many detector hyper-parameters are generally manually tuned, or they are used with values set by the detector authors. Automatic Hyper-parameter optimization has not been explored in improving CNN-based object detectors hyper-parameters. In this work, we propose the use of Black-box optimization methods to tune the prior/default box scales in Faster R-CNN and SSD, using Bayesian Optimization, SMAC, and CMA-ES. We show that by tuning the input image size and prior box anchor scale on Faster R-CNN mAP increases by 2% on PASCAL VOC 2007, and by 3% with SSD. On the COCO dataset with SSD there are mAP improvement in the medium and large objects, but mAP decreases by 1% in small objects. We also perform a regression analysis to find the significant hyper-parameters to tune.
Emotion and gender recognition from facial features are important properties of human empathy. Robots should also have these capabilities. For this purpose we have designed special convolutional modules that allow a model to recognize emotions and gender with a considerable lower number of parameters, enabling real-time evaluation on a constrained platform. We report accuracies of 96% in the IMDB gender dataset and 66% in the FER-2013 emotion dataset, while requiring a computation time of less than 0.008 seconds on a Core i7 CPU. All our code, demos and pre-trained architectures have been released under an open-source license in our repository at https://github.com/oarriaga/face classification.
Saliency methods are frequently used to explain Deep Neural Network-based models. Adebayo et al.'s work on evaluating saliency methods for classification models illustrate certain explanation methods fail the model and data randomization tests. However, on extending the tests for various state of the art object detectors we illustrate that the ability to explain a model is more dependent on the model itself than the explanation method. We perform sanity checks for object detection and define new qualitative criteria to evaluate the saliency explanations, both for object classification and bounding box decisions, using Guided Backpropagation, Integrated Gradients, and their Smoothgrad versions, together with Faster R-CNN, SSD, and EfficientDet-D0, trained on COCO. In addition, the sensitivity of the explanation method to model parameters and data labels varies class-wise motivating to perform the sanity checks for each class. We find that EfficientDet-D0 is the most interpretable method independent of the saliency method, which passes the sanity checks with little problems.