Refine
H-BRS Bibliography
- yes (55)
Departments, institutes and facilities
Document Type
- Article (32)
- Part of a Book (17)
- Contribution to a Periodical (3)
- Book (monograph, edited volume) (2)
- Conference Object (1)
Year of publication
Keywords
- GC/MS (11)
- Analytical pyrolysis (4)
- Corrosion inhibitors (4)
- Failure analysis (3)
- Polymers (3)
- Primary long-chain alkyl amines (3)
- Pyrolysis (3)
- Automotive industry (2)
- Chromatography (2)
- GC-FID/NPD (2)
Headspace-SPME-GC-MS identification of volatile organic compounds released from expanded polystyrene
(2004)
Analysis of Synthetic Polymers and Copolymers by Pyrolysis- Gas Chromatography/Mass Spectrometry
(2005)
Structural analysis and the study of degradation properties are important in order to understand and improve performance characteristics of synthetic polymers and copolymers in many industrial applications. Polymers/copolymers are inherently difficult to analyze because of their high molecular weight and lack of volatility. Traditionally, various analytical techniques are used to characterize polymers/copolymers including physical testing (rheological testing), thermogravimetric analysis (TGA), electron microscopy, Fourier transform infrared (FTIR) spectroscopy, size-exclusion chromatography (SEC)/gel permeation chromatography (GPC), and mass spectrometry (MS). Often, time consuming sample preparation, including hydrolysis, dissolution, or derivatization is needed before analysis.
Gas chromatography with flame-ionization detection (FID) and gas chromatography-mass spectrometry (GC/MS) has been used for structure elucidation of long-chain primary n-alkyl amines after derivatization with trifluoroacetic anhydride (TFAA). Electron impact ionization- (EI) and positive chemical ionization- (PCI) mass spectra of trifluoroacetylated derivatives of the identified nalkyl amines are presented. The corrosion inhibiting n-alkyl amines were applied in the investigation of a new anticorrosive and antifouling formulation for water-steam circuit of energy systems in the power industry. The presented results are part of an EU-funded international collaboration with partners from research institutes and industry from Poland, Lithuania, Romania, France and Germany (EUREKA project BOILTREAT E!2426).
Die analytische Pyrolyse ist eine universell einsetzbare Messtechnik zur Untersuchung von hoch molekularen organischen Verbindungen. Bei der Pyrolyse der hochmolekularen organischen Ver bindungen entstehen durch thermische Zersetzung bei 500-1400°C in einem Inertgasstrom nieder molekulare Verbindungen. Diese niedermolekularen Pyrolyse-Produkte werden dann den her kömmlichen Analyseverfahren wie GC-FID, GC/MS oder GC/FTIR unterworfen, die Rück schlüsse auf chemische Zusammensetzung und Struktur der Ausgangsstoffe erlauben. Die Festphasen mikroextraktion (SPME) ist eine lösungsmittelfreie Mikroextraktionstechnik. Im Headspace-Modus (HS) wurde SPME in den letzten Jahren für die Bestimmung von Rest mono meren und gesund heits gefährdenden, leichtflüchtigen organischen Verbindungen (VOCs) in Kunststoffen verwendet.
Refers To: Peter Kusch, Gerd Knupp, Marcus Hergarten, Marian Kozupa, Maria Majchrzak: Solid-phase extraction-gas chromatography and solid-phase extraction-gas chromatography–mass spectrometry determination of corrosion inhibiting long-chain primary alkyl amines in chemical treatment of boiler water in water-steam systems of power plants. - Journal of Chromatography A, Volume 1113, Issues 1–2, 28 April 2006, Pages 198-205
Der zunehmende Einsatz der Polymerwerkstoffe in der Automobilindustrie erfordert empfindliche und zuverlässige Methoden zur Analyse der verwendeten Stoffe. Bei Schadenanalysen an Komponenten in Kraftfahrzeugen stehen oftmals nur wenige Informationen über das Bauteil selbst, wie die chemische Zusammensetzung, die Temperaturbeständigkeit, mögliche Kontaminierungs stoffe oder mechanische Eigenschaften zur Verfügung. Der Schadensbereich ist meistens be grenzt und nicht immer homogen. Zur Klärung des Schadens stehen häufig nur kleine Proben mengen zur Verfügung, die jedoch für die Erkennung der Schadensursache von großer Bedeutung sein können.
Die Wiederverwertung von Kunststoffen (Kunststoffrecycling) kann in die werkstoffliche (materielle), die rohstoffliche (chemische) und die energetische Verwertung unterteilt werden. Beim werkstofflichen Kunststoffrecycling werden sortenreine Kunststoffreste gewaschen, gemahlen und von der Kunststoff verarbeitenden Industrie als Rohmaterial eingesetzt. Der chemische Aufbau des erhaltenen Werkstoffs (Re-Granulats) bleibt erhalten. Bei der rohstofflichen Verwertung werden Kunststoffreste zu Monomeren zurückgeführt. Die erhaltenen Monomere werden dann bei der Herstellung neuer Kunststoffe verwendet. Bei der energetischen Verwertung werden die Kunststoffreste der Zement- oder Stahlindustrie als Energieträger zugeführt.
A method for the identification of polymeric residues in recycled aluminium by using analytical pyrolysis at 700°C hyphenated to gas chromatography-mass spectrometry (Py-GC/MS) was presented for the first time. The polymeric residues in recycled aluminium were identified as a mixture of polyethylene, polystyrene, and phenolic resin. The described method could be useful for the aluminium industry as a part of the quality control of the recycled aluminium production.
Balanites aegyptiaca (Balanitaceae) is a widely grown desert plant with multiuse potential. In the present paper, a crude extract from B. aegyptiaca seeds equivalent to a ratio of 1 : 2000 seeds to the extract was screened for antiplasmodial activity. The determined IC(50) value for the chloroquine-susceptible Plasmodium falciparum NF54 strain was 68.26 μg/μL ± 3.5. Analysis of the extract by gas chromatography-mass spectrometry detected 6-phenyl-2(H)-1,2,4-triazin-5-one oxime, an inhibitor of the parasitic M18 Aspartyl Aminopeptidase as one of the compounds which is responsible for the in vitro antiplasmodial activity. The crude plant extract had a K(i) of 2.35 μg/μL and showed a dose-dependent response. After depletion of the compound, a significantly lower inhibition was determined with a K(i) of 4.8 μg/μL. Moreover, two phenolic compounds, that is, 2,6-di-tert-butyl-phenol and 2,4-di-tert-butyl-phenol, with determined IC(50) values of 50.29 μM ± 3 and 47.82 μM ± 2.5, respectively, were detected. These compounds may contribute to the in vitro antimalarial activity due to their antioxidative properties. In an in vivo experiment, treatment of BALB/c mice with the aqueous Balanite extract did not lead to eradication of the parasites, although a reduced parasitemia at day 12 p.i. was observed.
Gas chromatography with simultaneous flame-ionization detection (FID) and a nitrogen-phosphorus detection (NPD) as well as gas chromatography-mass spectrometry (GC/MS) has been used to characterize some long-chain primary alkyl amines and alkyl diamines after derivatization with trifluoroacetic anhydride (TFAA).
The criteria for assessing the quality of rubber materials are the polymer or copolymer composition and the additives. These additives include plasticizers, extender oils, carbon black, inorganic fillers, antioxidants, heat and light stabilizers, processing aids, cross-linking agents, accelerators, retarders, adhesives, pigments, smoke and flame retardants, and others. Determination of additives in polymers or copolymers generally requires the extraction of these substances from the matrix as a first step, which can be challenging, and the subsequent analysis of the extracted additives by gas chromatography (GC), GC-mass spectrometry (MS), high performance liquid chromatography (HPLC), HPLC-MS, capillary electrophoresis, thin-layer chromatography, and other analytical techniques. In the present work, nitrile rubber materials were studied using direct analytical flash pyrolysis hyphenated to GC and electrospray ionization MS in both scan and selected ion monitoring modes to demonstrate that this technique is a good tool to identify the organic additives in nitrile rubber.
The analytical pyrolysis technique hyphenated to gas chromatography–mass spectrometry (GC–MS) has extended the range of possible tools for the characterization of synthetic polymers and copolymers. Pyrolysis involves thermal fragmentation of the analytical sample at temperatures of 500–1400 °C. In the presence of an inert gas, reproducible decomposition products characteristic for the original polymer or copolymer sample are formed. The pyrolysis products are chromatographically separated using a fused-silica capillary column and are subsequently identified by interpretation of the obtained mass spectra or by using mass spectra libraries. The analytical technique eliminates the need for pretreatment by performing analyses directly on the solid or liquid polymer sample. In this article, application examples of analytical pyrolysis hyphenated to GC–MS for the identification of different polymeric materials in the plastic and automotive industry, dentistry, and occupational safety are demonstrated. For the first time, results of identification of commercial light-curing dental filling material and a car wrapping foil by pyrolysis–GC–MS are presented.
Analytical pyrolysis technique hyphenated to gas chromatography/mass spectrometry (Py-GC/MS) has extended the range of possible tools for characterization of synthetic polymers/copolymers. Pyrolysis involves thermal fragmentation of the analytical sample at elevated temperature between 500 and 1400 °C. In the presence of an inert gas, reproducible decomposition products characteristic for the original polymer/copolymer sample are formed. The pyrolysis products are chromatographically separated by using a fused silica capillary column and subsequently identified by interpretation of the obtained mass spectra or by using mass spectra libraries. The analytical technique eliminate the need for pre-treatment by performing analyses directly on the solid or liquid polymer sample.
In this paper, application examples of the analytical pyrolysis hyphenated to gas chromatography/mass spectrometry for the identification of different polymeric materials in the plastic and automotive industry, dentistry and occupational safety are demonstrated. For the first time results of identification of commercially light-curing dental filling material and a car wrapping foil by pyrolysis-GC/MS are presented.
This book chapter describes application examples of gas chromatography/mass spectrometry and pyrolysis – gas chromatography/mass spectrometry in failure analysis for the identification of chemical materials like mineral oils and nitrile rubber gaskets. Furthermore, failure cases demanding identification of polymers/copolymers in fouling on the compressor wall of a car air conditioner and identification of fouling on the surface of a bearing race from the automotive industry are demonstrated. The obtained analytical results were then used for troubleshooting and remedial action of the technological process.
Gas chromatography with flame-ionization detection (FID) and gas chromatography-mass spectrometry (GC/MS) with electron impact ionization (EI) and chemical ionization (PCI and NCI) were successfully used for separation and identification of commercially available longchain primary alkyl amines. The investigated compounds were used as corrosion inhibiting and antifouling agents in a water-steam circuit of energy systems in the power industry. Solidphase extraction (SPE) with octadecyl bonded silica (C18) sorbents followed by gas chromatography were used for quantification of the investigated Primene JM-T™ alkyl amines in boiler water, condensate and superheated steam samples from the power plant. Amine formulations from Kotamina group favor formation of protective layers on internal surfaces and keep them free from corrosion and scale. Alkyl amines contained in those formulations both render the environment alkaline and limit the corrosion impact of ionic and gaseous impurities by formation of protective layers. Moreover, alkyl amines limit scaling on heating surfaces of boilers and in turbine, ensuring failure-free operation. Application of alkyl amine formulation enhances heat exchange during boiling and condensation processes. Alkyl amines with branched structure are more thermally stable than linear alkyl amines, exhibit better adsorption and effectiveness of surface shielding. As a result, application of thermostable long-chain branched alkyl amines increases the efficiency of anti-corrosive protection. Moreover, the concentration of ammonia content in water and in steam was also considerably decreased.
Die analytische Pyrolyse ist ein universelles Analysenverfahren für hochmolekulare organische Verbindungen. Unter Pyrolyse (griech.: Pyros = Feuer, Lyso = zersetzen) versteht man die chemische Umsetzung von Substanzen mittels Wärme. Bei der Pyrolyse von hochmolekularen Substanzen handelt es sich um eine thermische Zersetzung unter kontrollierten Bedingungen in niedermolekulare Verbindungen. Die niedermolekularen Pyrolyseprodukte werden dann den herkömmlichen Analysenverfahren unterworfen, welche Rückschlüsse auf chemische Zusammensetzung, Struktur und Eigenschaften der Ausgangsstoffe erlauben.
A method for the identification of polymeric residues in recycled aluminium by using analytical pyrolysis at 700°C hyphenated to gas chromatography-mass spectrometry (Py-GC/MS) was presented for the first time. The polymeric residues in recycled aluminium were identified as a mixture of polyethylene, polystyrene and phenolic resin. The described method could be useful for the aluminium industry as a part of the quality control of the recycled aluminium production.
The criteria for assessing the quality of rubber materials are the polymer or copolymer composition and the additives. These additives include plasticizers, extender oils, carbon black, inorganic fillers, antioxidants, heat and light stabilizers, processing aids, cross-linking agents, accelerators, retarders, adhesives, pigments, smoke and flame retardants, and others. Determination of additives in polymers or copolymers generally requires the extraction of these substances from the matrix as a first step, which can be challenging, and the subsequent analysis of the extracted additives by gas chromatography (GC), GC–mass spectrometry (MS), high performance liquid chromatography (HPLC), HPLC–MS, capillary electrophoresis, thin-layer chromatography, and other analytical techniques. In the present work, nitrile rubber materials were studied using direct analytical flash pyrolysis hyphenated to GC and electrospray ionization MS in both scan and selected ion monitoring modes to demonstrate that this technique is a good tool to identify the organic additives in nitrile rubber.
The analytical pyrolysis technique hyphenated to gas chromatography–mass spectrometry (GC–MS) has extended the range of possible tools for the characterization of synthetic polymers and copolymers. Pyrolysis involves thermal fragmentation of the analytical sample at temperatures of 500–1400 °C. In the presence of an inert gas, reproducible decomposition products characteristic for the original polymer or copolymer sample are formed. The pyrolysis products are chromatographically separated using a fused-silica capillary column and are subsequently identified by interpretation of the obtained mass spectra or by using mass spectra libraries. The analytical technique eliminates the need for pretreatment by performing analyses directly on the solid or liquid polymer sample. In this article, application examples of analytical pyrolysis hyphenated to GC–MS for the identification of different polymeric materials in the plastic and automotive industry, dentistry, and occupational safety are demonstrated. For the first time, results of identification of commercial light-curing dental filling material and a car wrapping foil by pyrolysis–GC–MS are presented.
Solid-Phase Microextraction (SPME) is a very simple and efficient, solventless sample preparation method, invented by Pawliszyn and coworkers at the University of Waterloo (Canada) in 1989. This method has been widely used in different fields of analytical chemistry since its first applications to environmental and food analysis. SPME integrates sampling, extraction, concentration and sample introduction into a single solvent-free step. The method saves preparation time, disposal costs and can improve detection limits. It has been routinely used in combination with gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) and successfully applied to a wide variety of ompounds, especially for the extraction of volatile and semi-volatile organic compounds from environmental, biological and food samples.
Since the last twenty years, SPME in headspace (HS) mode is used as a valuable sample preparation technique for identifying degradation products in polymers and for determination of rest monomers and other light-boiling substances in polymeric materials. For more than ten years, our laboratory has been involved in projects focused on the application of HS-SPME-GC/MS for the characterization of polymeric materials from many branches of manufacturing and building industries. This book chapter describes the application examples of this technique for identifying volatile organic compounds (VOCs), additives and degradation products in industrial plastics, rubber, and packaging materials.
For the last 20 years, solid-phase microextraction (SPME) in headspace (HS) mode has been used as a valuable sample preparation technique for identifying degradation products in polymers and the determination of residual monomers and other light-boiling substances in polymeric materials. For more than 10 years, our laboratory has been involved in projects focused on the application of HS-SPME-gas chromatography–mass spectrometry (GC–MS) for the characterization of polymeric materials from many branches of manufacturing and building industries. This article describes the application of this technique for identifying volatile organic compounds (VOCs), additives, and degradation products in industrial rubber, car labeling reflection foil, and bone cement materials. The obtained analytical results were then used for troubleshooting and remedial action of the technological processes as well as for the health protection of producers and users.
Pyrolysis–Gas Chromatography
(2024)
The methodology of analytical pyrolysis-GC/MS has been known for several years, but is seldom used in research laboratories and process control in the chemical industry. This is due to the relative difficulty of interpreting the identified pyrolysis products as well as the variety of them. This book contains full identification of several classes of polymers/copolymers and biopolymers that can be very helpful to the user. In addition, the practical applications can encourage analytical chemists and engineers to use the techniques explored in this volume.
According to the International Union of Pure and Applied Chemistry (IUPAC) recommendation, analytical pyrolysis (Py) is defined as the characterization in an inert atmosphere of a material or a chemical process by a chemical degradation reaction(s) induced by thermal energy [1]. Thermal degradation under controlled conditions is often used as a part of an analytical procedure, either to render a sample into a suitable form for subsequent analysis by gas chromatography (GC), mass spectrometry (MS), gas chromatography coupled with the mass spectrometry (GC/MS), with the Fourier-transform infrared spectroscopy (GC/FTIR), or by direct monitoring as an analytical technique in its own right [2].
Gas chromatography (GC) is a type of chromatography. According to the International Union of Pure and Applied Chemistry (IUPAC) recommendation, gas chromatography is defined as a separation technique in which the mobile phase is a gas. Gas chromatography is always carried out in a column [1]. GC is a separation and detection method for sample mixtures, whose components can be volatilized without thermal decomposition.
Miscanthus x giganteus Stem Versus Leaf-Derived Lignins Differing in Monolignol Ratio and Linkage
(2019)
As a renewable, Miscanthus offers numerous advantages such as high photosynthesis activity (as a C4 plant) and an exceptional CO2 fixation rate. These properties make Miscanthus very attractive for industrial exploitation, such as lignin generation. In this paper, we present a systematic study analyzing the correlation of the lignin structure with the Miscanthus genotype and plant portion (stem versus leaf). Specifically, the ratio of the three monolignols and corresponding building blocks as well as the linkages formed between the units have been studied. The lignin amount has been determined for M. x giganteus (Gig17, Gig34, Gig35), M. nagara (NagG10), M. sinensis (Sin2), and M. robustus (Rob4) harvested at different time points (September, December, and April). The influence of the Miscanthus genotype and plant component (leaf vs. stem) has been studied to develop corresponding structure-property relationships (i.e., correlations in molecular weight, polydispersity, and decomposition temperature). Lignin isolation was performed using non-catalyzed organosolv pulping and the structure analysis includes compositional analysis, Fourier transform infradred (FTIR), ultraviolet/visible (UV-Vis), hetero-nuclear single quantum correlation nuclear magnetic resonsnce (HSQC-NMR), thermogravimetric analysis (TGA), and pyrolysis gaschromatography/mass spectrometry (GC/MS). Structural differences were found for stem and leaf-derived lignins. Compared to beech wood lignins, Miscanthus lignins possess lower molecular weight and narrow polydispersities (<1.5 Miscanthus vs. >2.5 beech) corresponding to improved homogeneity. In addition to conventional univariate analysis of FTIR spectra, multivariate chemometrics revealed distinct differences for aromatic in-plane deformations of stem versus leaf-derived lignins. These results emphasize the potential of Miscanthus as a low-input resource and a Miscanthus-derived lignin as promising agricultural feedstock.
Mass Spectrometry: Pyrolysis
(2019)
Miscanthus crops possess very attractive properties such as high photosynthesis yield and carbon fixation rate. Because of these properties, it is currently considered for use in second-generation biorefineries. Here we analyze the differences in chemical composition between M. x giganteus, a commonly studied Miscanthus genotype, and M. nagara, which is relatively understudied but has useful properties such as increased frost resistance and higher stem stability. Samples of M. x giganteus (Gig35) and M. nagara (NagG10) have been separated by plant portion (leaves and stems) in order to isolate the corresponding lignins. The organosolv process was used for biomass pulping (80% ethanol solution, 170 °C, 15 bar). Biomass composition and lignin structure analysis were performed using composition analysis, Fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis) and nuclear magnetic resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), size exclusion chromatography (SEC) and pyrolysis gas-chromatography/mass spectrometry (Py-GC/MS) to determine the 3D structure of the isolated lignins, monolignol ratio and most abundant linkages depending on genotype and harvesting season. SEC data showed significant differences in the molecular weight and polydispersity indices for stem versus leaf-derived lignins. Py-GC/MS and hetero-nuclear single quantum correlation (HSQC) NMR revealed different monolignol compositions for the two genotypes (Gig35, NagG10). The monolignol ratio is slightly influenced by the time of harvest: stem-derived lignins of M. nagara showed increasing H and decreasing G unit content over the studied harvesting period (December–April).
Polyurethane (PU) coatings were successfully produced using unmodified kraft lignin (KL) as an environmentally benign component in contents of up to 80 wt%. Lignin samples were precipitated from industrial black liquor in aqueous solution working at room temperature and different pH levels (pH 2 to pH 5). Lignins were characterized by UV-Vis, FTIR, pyrolysis-GC/MS, SEC and 31P-NMR. Results show a correlation between pH level, OH number and molecular weight Mw of isolated lignins. Lignin-based polyurethane coatings were prepared in an efficient one step synthesis dissolving lignin in THF and PEG425 in an ultrasonic bath followed by addition of 4,4-diphenylmethanediisocyanate (MDI) and triethylamine (TEA). Crosslinking was achieved under very mild conditions (1 hour at room temperature followed by 3 hours at 35 °C). The resulting coatings were characterized regarding their physical properties including ATR-IR, TGA, optical contact angle, light microscopy, REM-EDX and AFM data. Transparent homogeneous films of high flexibility resulted from lignins isolated at pH 4, possessing a temperature resistance up to 160 °C. Swelling tests revealed a resistance against water. Swelling in DMSO depends on index, pH of precipitation and catalyst utilization for PU preparation. According to AFM studies, surface roughness is between 10 and 28 nm.